Skip to main content
Log in

Transport properties of overheated electrons trapped on a helium surface

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An ultra-strong photovoltaic effect has recently been reported for electrons trapped on a liquid helium surface under a microwave excitation tuned at intersubband resonance [D. Konstantinov, A.D. Chepelianskii, K. Kono, J. Phys. Soc. Jpn 81, 093601 (2012)]. In this article, we analyze theoretically the redistribution of the electron density induced by an overheating of the surface electrons under irradiation, and obtain quantitative predictions for the photocurrent dependence on the effective electron temperature and confinement voltages. We show that the photo-current can change sign as a function of the parameters of the electrostatic confinement potential on the surface, while the photocurrent measurements reported so far have been performed only at a fixed confinement potential. The experimental observation of this sign reversal could provide a reliable estimation of the electron effective temperature in this new out of equilibrium state. Finally, we have also considered the effect of the temperature on the outcome of capacitive transport measurement techniques. These investigations led us to develop, numerical and analytical methods for solving the Poisson-Boltzmann equation in the limit of very low temperatures which could be useful for other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Electrons on Helium and Other Cryogenic Substrates, edited by E.Y. Andrei (Kluwer Academic, Dordrecht, 1997)

  2. Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

  3. G.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 795 (1979)

    Article  ADS  Google Scholar 

  4. D.C. Glattli, E.Y. Andrei, G. Deville, J. Poitrenaud, F.I.B. Williams, Phys. Rev. Lett 54, 1710 (1985)

    Article  ADS  Google Scholar 

  5. V.A. Volkov, S.A. Mikhailov, in Landau Level Spectroscopy (Elsevier Science Publ., North-Holland, 1991), p. 855

  6. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    Article  ADS  Google Scholar 

  7. A.V. Smorodin, V.A. Nikolaenko, S.S. Sokolov, L.A. Karachevtseva, O.A. Lytvynenko, Low Temp. Phys. 38, 915 (2012)

    Article  ADS  Google Scholar 

  8. T. Günzler, B. Bitnar, G. Mistura, S. Neser, P. Leiderer, Surf. Sci. 361-362, 831 (1996)

    Article  ADS  Google Scholar 

  9. K. Shirahama, K. Kono, Phys. Rev. Lett. 74, 781 (1995)

    Article  ADS  Google Scholar 

  10. K. Shirahama, K. Kono, J. Low Temp. Phys. 104, 237 (1996)

    Article  ADS  Google Scholar 

  11. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)

    Article  ADS  Google Scholar 

  12. G. Papageorgiou, P. Glasson, K. Harrabi, V. Antonov, E. Collin, P. Fozooni, P.G. Frayne, M. Lea, D.G. Rees, Y. Mukharsky, Appl. Phys. Lett. 86, 153106 (2005)

    Article  ADS  Google Scholar 

  13. F.R. Bradbury, M. Takita, T.M. Gurrieri, K.J. Wilkel, K. Eng, M.S. Carroll, S.A. Lyon, Phys. Rev. Lett. 107, 266803 (2011)

    Article  ADS  Google Scholar 

  14. D. Konstantinov, M.I. Dykman, M.J. Lea, Yu.P. Monarkha, K. Kono, Phys. Rev. Lett. 103, 096801 (2009)

    Article  ADS  Google Scholar 

  15. D. Konstantinov, K. Kono, Phys. Rev. Lett. 105, 226801 (2010)

    Article  ADS  Google Scholar 

  16. R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, V. Umansky, Nature 420, 646 (2002)

    Article  ADS  Google Scholar 

  17. M.A. Zudov, R.R. Du, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 90, 046807 (2003)

    Article  ADS  Google Scholar 

  18. D. Konstantinov, A.D. Chepelianskii, K. Kono, J. Phys. Soc. Jpn 81, 093601 (2012)

    Article  ADS  Google Scholar 

  19. A.D. Chepelianskii, D.L. Shepelyansky, Phys. Rev. B 80, 241308(R) (2009)

    Article  ADS  Google Scholar 

  20. O.V. Zhirov, A.D. Chepelianskii, D.L. Shepelyansky, Phys. Rev. B 88, 035410 (2013)

    Article  ADS  Google Scholar 

  21. Y.P. Monarkha, Low Temp. Phys. 37, 655 (2011)

    Article  ADS  Google Scholar 

  22. Y.P. Monarkha, Low Temp. Phys. 38, 451 (2012)

    Article  ADS  Google Scholar 

  23. I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, M.A. Zudov, Rev. Mod. Phys. 84, 1709 (2012)

    Article  ADS  Google Scholar 

  24. D. Konstantinov, H. Isshiki, H. Akimoto, K. Shirahama, Y. Monarkha, K. Kono, J. Phys. Soc. Jpn 77, 034705 (2008)

    Article  ADS  Google Scholar 

  25. A. Chepelianskii, F. Mohammad-Rafiee, E. Trizac, E. Raphael, J. Phys. Chem. B 113, 3743 (2009)

    Google Scholar 

  26. A.D. Chepelianskii, F. Closa, E. Raphäel, E. Trizac, Eur. Phys. Lett. 94, 68010 (2011)

    Article  ADS  Google Scholar 

  27. L. Wilen, R. Giannetta, J. Low Temp. Phys. 72, 353 (1988)

    Article  ADS  Google Scholar 

  28. Y.Z. Kovdrya, V.A. Nikolayenko, O.I. Kirichek, S.S. Sokolov, V.N. Grigor’ev, J. Low Temp. Phys. 91, 371 (1993)

    Article  ADS  Google Scholar 

  29. F. Closa, A.D. Chepelianskii, E. Raphaël, E. Trizac, to be published

  30. W.T. Sommer, D.J. Tanner, Phys. Rev. Lett. 27, 1345 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei D. Chepelianskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Closa, F., Raphäel, E. & Chepelianskii, A. Transport properties of overheated electrons trapped on a helium surface. Eur. Phys. J. B 87, 190 (2014). https://doi.org/10.1140/epjb/e2014-50254-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50254-6

Keywords

Navigation