Skip to main content

Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy

Abstract

We utilize long-term memory, fractal dimension and approximate entropy as input variables for the Efficiency Index [L. Kristoufek, M. Vosvrda, Physica A 392, 184 (2013)]. This way, we are able to comment on stock market efficiency after controlling for different types of inefficiencies. Applying the methodology on 38 stock market indices across the world, we find that the most efficient markets are situated in the Eurozone (the Netherlands, France and Germany) and the least efficient ones in the Latin America (Venezuela and Chile).

This is a preview of subscription content, access via your institution.

References

  1. E. Fama, J. Business 38, 34 (1965)

    Article  Google Scholar 

  2. E. Fama, J. Finance 25, 383 (1970)

    Article  Google Scholar 

  3. P. Samuelson, Ind. Manag. Rev. 6, 41 (1965)

    Google Scholar 

  4. R. Cont, Quant. Financ. 1, 223 (2001)

    Article  Google Scholar 

  5. T. Di Matteo, Quant. Financ. 7, 21 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Di Matteo, T. Aste, M. Dacorogna, Physica A 324, 183 (2003)

    ADS  Article  MATH  Google Scholar 

  7. T. Di Matteo, T. Aste, M. Dacorogna, J. Bank. Financ. 29, 827 (2005)

    Article  Google Scholar 

  8. J. Barunik, T. Aste, T. Di Matteo, R. Liu, Physica A 391, 4234 (2012)

    ADS  Article  Google Scholar 

  9. R. Morales, T. Di Matteo, T. Aste, Physica A 392, 6470 (2013)

    ADS  Article  Google Scholar 

  10. R. Morales, T. Di Matteo, R. Gramatica, T. Aste, Physica A 391, 3180 (2012)

    ADS  Article  Google Scholar 

  11. D. Cajueiro, B. Tabak, Physica A 342, 656 (2004)

    ADS  Article  MathSciNet  Google Scholar 

  12. D. Cajueiro, B. Tabak, Physica A 336, 521 (2004)

    ADS  Article  MathSciNet  Google Scholar 

  13. D. Cajueiro, B. Tabak, Chaos Solitons Fractals 22, 349 (2004)

    ADS  Article  MATH  Google Scholar 

  14. D. Cajueiro, B. Tabak, Chaos Solitons Fractals 23, 671 (2005)

    ADS  Article  MATH  Google Scholar 

  15. K.-P. Lim, Physica A 376, 445 (2007)

    ADS  Article  Google Scholar 

  16. L. Zunino, M. Zanin, B. Tabak, D. Pérez, O. Rosso, Physica A 389, 1891 (2010)

    ADS  Article  Google Scholar 

  17. L. Kristoufek, M. Vosvrda, Physica A 392, 184 (2013)

    ADS  Article  Google Scholar 

  18. M. Taqqu, W. Teverosky, W. Willinger, Fractals 3, 785 (1995)

    Article  MATH  Google Scholar 

  19. M. Taqqu, V. Teverovsky, On Estimating the Intensity of Long-Range Dependence in Finite and Infinite Variance Time Series, in A Practical Guide To Heavy Tails: Statistical Techniques and Applications (1996)

  20. V. Teverovsky, M. Taqqu, W. Willinger, J. Stat. Plann. Inference 80, 211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Barunik, L. Kristoufek, Physica A 389, 3844 (2010)

    ADS  Article  MathSciNet  Google Scholar 

  22. L. Kristoufek, Physica A 391, 4252 (2012)

    ADS  Article  Google Scholar 

  23. L. Kristoufek, AUCO Czech Econ. Rev. 4, 236 (2010)

    Google Scholar 

  24. M. Couillard, M. Davison, Physica A 348, 404 (2005)

    ADS  Article  Google Scholar 

  25. S. Lennartz, A. Bunde, Phys. Rev. E 79, 066101 (2009)

    ADS  Article  Google Scholar 

  26. R. Weron, Physica A 312, 285 (2002)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  27. W.-X. Zhou, Chaos Solitons Fractals 45, 147 (2012)

    ADS  Article  MATH  Google Scholar 

  28. L. Giraitis, P. Kokoszka, R. Leipus, G. Teyssière, J. Econom. 112, 265 (2003)

    Article  MATH  Google Scholar 

  29. L. Kristoufek, Eur. Phys. J. B 86, 418 (2013)

    ADS  Article  MathSciNet  Google Scholar 

  30. A. Lo, Econometrica 59, 1279 (1991)

    Article  MATH  Google Scholar 

  31. B. Mandelbrot, Econometrica 39, 68 (1971)

    Google Scholar 

  32. P.M. Robinson, Ann. Stat. 23, 1630 (1995)

    Article  MATH  Google Scholar 

  33. H.R. Künsch, Statistical Aspects of Self-similar Processes, in Proceedings of the First World Congress of the Bernoulli Society (1987), Vol. 1, pp. 67–74

  34. J. Geweke, S. Porter-Hudak, J. Time Ser. Anal. 4, 221 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Beran, in Statistics for Long-Memory Processes, Monographs on Statistics and Applied Probability (Chapman and Hall, New York, 1994), Vol. 61

  36. T. Gneiting, M. Schlather, SIAM Rev. 46, 269 (2004)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  37. T. Gneiting, H. Sevcikova, D.B. Percival, Estimators of fractal dimension: Assessing the roughness of time series and spatial data, Technical report, Department of Statistics, University of Washington, 2010

  38. P. Hall, A. Wood, Biometrika 80, 246 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. M.G. Genton, Math. Geol. 30, 213 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Davies, P. Hall, J. Roy. Stat. Soc. Ser. B 61, 3 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Z. Zhu, M. Stein, Statistica Sinica 12, 863 (2002)

    MATH  MathSciNet  Google Scholar 

  42. S. Pincus, R.E. Kalman, Proc. Natl. Acad. Sci. 101, 13709 (2004)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  43. S. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  44. L. Kristoufek, M. Vosvrda, Energy Econ. 42, 50 (2014)

    Article  Google Scholar 

  45. L. Kristoufek, M. Vosvrda, Politická Ekonomie 16, 208 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Kristoufek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kristoufek, L., Vosvrda, M. Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy. Eur. Phys. J. B 87, 162 (2014). https://doi.org/10.1140/epjb/e2014-50113-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50113-6

Keywords

  • Statistical and Nonlinear Physics