Skip to main content

Information-theoretic approach to lead-lag effect on financial markets

Abstract

Recently the interest of researchers has shifted from the analysis of synchronous relationships of financial instruments to the analysis of more meaningful asynchronous relationships. Both types of analysis are concentrated mostly on Pearson’s correlation coefficient and consequently intraday lead-lag relationships (where one of the variables in a pair is time-lagged) are also associated with them. Under the Efficient-Market Hypothesis such relationships are not possible as all information is embedded in the prices, but in real markets we find such dependencies. In this paper we analyse lead-lag relationships of financial instruments and extend known methodology by using mutual information instead of Pearson’s correlation coefficient. Mutual information is not only a more general measure, sensitive to non-linear dependencies, but also can lead to a simpler procedure of statistical validation of links between financial instruments. We analyse lagged relationships using New York Stock Exchange 100 data not only on an intraday level, but also for daily stock returns, which have usually been ignored.

References

  1. P.A. Samuelson, Ind. Manage. Rev. 6, 41 (1965)

    Google Scholar 

  2. J. Tobin, J. Money Credit Bank. 1, 15 (1969)

    Article  Google Scholar 

  3. A. Lo, A. MacKinlay, Rev. Finance Stud. 1, 41 (1988)

    Article  Google Scholar 

  4. A. Shmilovici, Y. Alon-Brimer, S. Hauser, Comput. Econom. 22, 273 (2003)

    MATH  Article  Google Scholar 

  5. P. Fiedor, Frequency Effects on Predictability of Stock Returns, in Proceedings of the IEEE Computational Intelligence for Financial Engineering & Economics 2014, edited by A. Serguieva, D. Maringer, V. Palade, R.J. Almeida (IEEE, London, 2014), pp. 247–254

  6. B.B. Mandelbrot, J. Business 36, 394 (1963)

    Article  Google Scholar 

  7. L.P. Kadanoff, Simulation 16, 261 (1971)

    Article  Google Scholar 

  8. R.N. Mantegna, Physica A 179, 232 (1991)

    ADS  Article  Google Scholar 

  9. R. Mantegna, Eur. Phys. J. B 11, 193 (1999)

    ADS  Article  Google Scholar 

  10. P. Cizeau, M. Potters, J. Bouchaud, Quant. Finance 1, 217 (2001)

    Article  Google Scholar 

  11. K. Forbes, R. Rigobon, J. Finance 57, 2223 (2002)

    Article  Google Scholar 

  12. B. Podobnik, H. Stanley, Phys. Rev. Lett. 100, 084102 (2008)

    ADS  Article  Google Scholar 

  13. T. Aste, W. Shaw, T.D. Matteo, New J. Phys. 12, 085009 (2010)

    ADS  Article  Google Scholar 

  14. D. Kenett, T. Preis, G. Gur-Gershgoren, E. Ben-Jacob, Europhys. Lett. 99, 38001 (2012)

    ADS  Article  Google Scholar 

  15. G. Bonanno, F. Lillo, R. Mantegna, Quant. Finance 1, 96 (2001)

    Article  Google Scholar 

  16. M. Tumminello, T.D. Matteo, T. Aste, R. Mantegna, Eur. Phys. J. B 55, 209 (2007)

    ADS  MATH  MathSciNet  Article  Google Scholar 

  17. M. Munnix, R. Schafer, T. Guhr, Physica A 389, 4828 (2010)

    ADS  Article  Google Scholar 

  18. M. Billio, M. Getmansky, A. Lo, L. Pelizzon, J. Finance Econ. 104, 535 (2012)

    Article  Google Scholar 

  19. D. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R. Mantegna, E. Ben-Jacob, PLoS ONE 5, e15032 (2010)

    ADS  Article  Google Scholar 

  20. P. Fiedor, Phys. Rev. E 89, 052801 (2014)

    ADS  Article  Google Scholar 

  21. L. Laloux, P. Cizeau, M. Potters, J. Bouchaud, Int. J. Theoret. Appl. Finance 3, 391 (2000)

    MATH  Article  Google Scholar 

  22. D. Fenn, M. Porter, S. Williams, M. McDonald, N. Johnson, N. Jones, Phys. Rev. E 84, 026109 (2011)

    ADS  Article  Google Scholar 

  23. G. Bonanno, G. Caldarelli, F. Lillo, R. Mantegna, Phys. Rev. E 68, 046130 (2003)

    ADS  Article  Google Scholar 

  24. J. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, Physica A 324, 247 (2003)

    ADS  MATH  MathSciNet  Article  Google Scholar 

  25. M. Tumminello, T. Aste, T.D. Matteo, R.N. Mantegna, Proc. Natl. Acad. Sci. USA 102, 10421 (2005)

    ADS  Article  Google Scholar 

  26. M. Tumminello, T. Aste, T.D. Matteo, R.N. Mantegna, Eur. Phys. J. B 55, 209 (2007)

    ADS  MATH  MathSciNet  Article  Google Scholar 

  27. M. Tumminello, C. Coronnello, F. Lillo, S. Micciche, R. Mantegna, Int. J. Bifurcat. Chaos 17, 2319 (2007)

    MATH  Article  Google Scholar 

  28. N. Huth, F. Abergel, arXiv:1111.7103 (2011)

  29. C. Curme, M. Tumminello, R. Mantegna, H. Stanley, D. Kenett, arXiv:1401.0462 (2014)

  30. W.A. Brock, D.A. Hsieh, B. LeBaron, Nonlinear Dynamics, Chaos, and Instability. Statistical Theory and Economic Evidence (MIT Press, Cambridge, 1991)

  31. M. Qi, J. Bus. Econ. Stat. 17, 419 (1999)

    Google Scholar 

  32. D. McMillan, Int. Rev. Econ. Finance 10, 353 (2001)

    Article  Google Scholar 

  33. D. Sornette, J. Andersen, Int. J. Mod. Phys. C 13, 171 (2002)

    ADS  MATH  Article  Google Scholar 

  34. K. Oh, K. Kim, Expert Syst. Appl. 22, 249 (2002)

    Article  Google Scholar 

  35. P.H. Franses, D.V. Dijk, J. Forecasting 15, 229 (1996)

    Article  Google Scholar 

  36. A. Abhyankar, L. Copeland, W. Wong, Econ. J. 105, 864 (1995)

    Article  Google Scholar 

  37. P. Chen, Stud. Nonlinear Dyn. Econom. 1 (1996)

  38. A. Abhyankar, L. Copeland, W. Wong, J. Bus. Econ. Stat. 15, 1 (1997)

    Google Scholar 

  39. P.A. Ammermann, D.M. Patterson, Pacific-Basin Finance Journal 11, 175 (2003)

    Article  Google Scholar 

  40. D. Hsieh, J. Business 62, 339 (1989)

    Article  Google Scholar 

  41. R. Meese, A. Rose, Rev. Econ. Stud. 58, 603 (1991)

    Article  Google Scholar 

  42. C. Brooks, Appl. Finance Econ. 6, 307 (1996)

    Article  Google Scholar 

  43. M. Qi, Y. Wu, J. Empir. Finance 10, 623 (2003)

    Article  Google Scholar 

  44. T. Cover, J. Thomas, Elements of Information Theory (John Wiley & Sons, 1991)

  45. F. Zhou, J. He, W. Zhong, Mutual Information based Minimum Spanning Trees Model for Selecting Discriminative Genes, in Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering (2007), pp. 1051–1055

  46. F. Zhou, J. He, W. Zhong, Y. Pan, Int. J. Comput. Biol. Drug Des. 2, 187 (2009)

    Article  Google Scholar 

  47. A.C. Muller, S. Nowozin, C.H. Lampert, in Pattern Recognition (Springer, Berlin, 2012), Chap. Information Theoretic Clustering Using Minimum Spanning Trees

  48. O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, Trends Cogn. Sci. 8, 418 (2004)

    Article  Google Scholar 

  49. N. Brenner, O. Agam, W. Bialek, R. de Ruyter van Steveninck, Phys. Rev. Lett. 81, 4000 (1998)

    ADS  Article  Google Scholar 

  50. N. Brenner, O. Agam, W. Bialek, R. de Ruyter van Steveninck, Phys. Rev. E 66, 031907 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  51. J. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 174, 157 (2009)

    ADS  Article  Google Scholar 

  52. M. Palus, V. Komarek, T. Prochazka, Z. Hrncir, K. Sterbova, IEEE Eng. Med. Biol. 20, 65 (2001)

    Article  Google Scholar 

  53. A.M. Fraser, H.L. Swinney, Phys. Rev. A 33, 1134 (1986)

    ADS  MATH  MathSciNet  Article  Google Scholar 

  54. U. Parlitz, in Nonlinear Modeling – Advanced Black-Box Techniques (Kluwer Academic Publishers, Boston, 1998), Chap. Nonlinear Time-Series Analysis

  55. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2004)

  56. S. Haykin, Communication Systems (John Wiley & Sons, New York, 2001)

  57. F. Rossi, A. Lendasse, D. Francois, V. Wertz, M. Verleysen, Chemometr. Intell. Lab. 2, 215 (2006)

    Article  Google Scholar 

  58. B. Efron, R. Tibshirani, An introduction to the bootstrap (CRC press, 1993)

  59. M. Tumminello, S. Miccichè, F. Lillo, J. Piilo, R. Mantegna, PLoS ONE 6, e17994 (2011)

    ADS  Article  Google Scholar 

  60. Y. Benjamini, Y. Hochberg, J. R. Statist. Soc. B 57, 289 (1995)

    MATH  MathSciNet  Google Scholar 

  61. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    MATH  MathSciNet  Article  Google Scholar 

  62. J. Beirlant, E. Dudewicz, L. Gyorfi, E. van der Meulen, Int. J. Math. Stat. Sci. 6, 17 (1997)

    MATH  MathSciNet  Google Scholar 

  63. G. Darbellay, I. Vajda, IEEE T. Inform. Theory 45, 1315 (1999)

    MATH  MathSciNet  Article  Google Scholar 

  64. L. Paninski, Neural Comput. 15, 1191 (2003)

    MATH  Article  Google Scholar 

  65. C. Daub, R. Steuer, J. Selbig, S. Kloska, BCM Bioinformatics 5, 118 (2004)

    Article  Google Scholar 

  66. W. Nemenman, W. Bialek, R. de Ruyter van Steveninck, Phys. Rev. E 69, 056111 (2004)

    ADS  Article  Google Scholar 

  67. J. Bonachela, H. Hinrichsen, M. Munoz, J. Phys. A 41, 202001 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  68. T. Schurmann, P. Grassberger, Chaos 6, 414 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  69. D. François, V. Wertz, M. Verleysen, The permutation test for feature selection by mutual information, in European Symposium on Artificial Neural Networks, 2006, pp. 239–244

  70. B. Goebel, Z. Dawy, J. Hagenauer, J. Mueller, An Approximation to the Distribution of Finite Sample Size Mutual Information Estimate, in Proc. IEEE Intl. Conf. Comm. (2005)

  71. Z. Dawy, B. Goebel, J. Hagenauer, C. Andreoli, T. Meitinger, J. Mueller, IEEE/ACM Trans. Comput. Biol. Bioinf. 3, 47 (2006)

    Article  Google Scholar 

  72. R. Steuer, L. Molgedey, W. Ebeling, M. Jiménez-Montaño, Eur. Phys. J. B 19, 265 (2001)

    ADS  Article  Google Scholar 

  73. N. Navet, S.H. Chen, in Natural Computing in Computational Finance, edited by T. Brabazon, M. O’Neill (Springer, 2008), Vol. 100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Fiedor.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiedor, P. Information-theoretic approach to lead-lag effect on financial markets. Eur. Phys. J. B 87, 168 (2014). https://doi.org/10.1140/epjb/e2014-50108-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50108-3

Keywords

  • Statistical and Nonlinear Physics