Skip to main content
Log in

Percolation features of cooperative Jahn-Teller systems: Ising EFT framework

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Elastic exchange between two nearest Jahn-Teller (JT) centers in two or three dimensional dense crystals, can give an ordered macroscopic distortion known as cooperative JT effect (CJTE). A very diluted JT crystal does not show this effect. In the dynamic JT effect (DJTE), tunneling between different equivalent distorted wells has a pronounced influence on the CJTE. We investigate this phenomenon using a progressive increase in the concentration of these centers in the JT crystals, based on a bond percolation vector spin analogy technique within the framework of effective field theory (EFT). Mean field theory (MFT) was extensively used in previous studies of CJTE; however it neither includes correlation between JT centers in the lattice due to the complexity of the distortion field in the crystal nor the effect of tunneling between wells. We resort to an alternative procedure, by describing a JT center as a pseudo-spin vector \(\vec S\), induced to represent the degenerate JT-distorted states, where two nearest JT centers interact via an elastic exchange described by an Ising type spin interaction. The DJTE is considered to be similar to an elastic transverse field term in the Hamiltonian portraying the effect of tunneling between equivalent wells in the adiabatic potential energy surface (APES). We will be particularly discussing S = 1, S = 3/2 and S = 5/2 spin cases, where 2S + 1 wells in the APES are present and what JT systems they actually represent, with a percolative mechanism applied to the interactions between different JT centers. The different lattices are distinguished by their coordination numbers. Strong tunneling effects can suppress the CJTE and lead to a new state of criticality. Generalizations to higher spin systems will be obtained using a scaling technique. For the relevant distortions, we determine single site correlations, the macroscopic average distortion describing a structural phase transition and the elastic isothermal susceptibility as a function of temperature. The critical bond percolation threshold and the critical tunneling parameter are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Jahn, E. Teller, Proc. R. Soc. London A 161, 220 (1937)

    Article  ADS  Google Scholar 

  2. C.C. Chancey, M.C.M. OBrien, The Jahn-Teller Effect in C60 and Other Icosahedral Complexes (Princeton University Press, Princeton, 1997)

  3. I.B. Bersuker, V.Z. Polinger, Vibronic interactions in molecules and crystals (Springer-Verlag, Berlin, Heidelberg, New York, 1989)

  4. A. Abragam, B. Bleaney Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

  5. F.S. Ham, Phys. Rev. 138, 1727 (1965)

    Article  ADS  Google Scholar 

  6. F.E. Al-Hazmi, E.A. Moujaes, M Abou-Ghantous, C.A. Bates, J.L. Dunn, J. Phys.: Condens. Matter 17, 4779 (2005)

    Article  ADS  Google Scholar 

  7. M. Abou Ghantous, F. Disdier, M. Locatelli, Phys. Lett. A 39, 54 (1972)

    Article  ADS  Google Scholar 

  8. M. Abou-Ghantous, C.A. Bates, I.A. Clark, J.R. Fletcher, P.C. Jaussaud, W.S. Moore, J. Phys. C 7, 2707 (1976)

    Article  ADS  Google Scholar 

  9. M. Abou Ghantous, J.A. Clark, W.S. Moore, J. Phys. C 9, 1965 (1976)

    Article  ADS  Google Scholar 

  10. B. Salce, A.M. de Goer, J. Phys. C 12, 2081 (1979)

    Article  ADS  Google Scholar 

  11. G. Goetz, H. Zimmermann, H.J. Schulz, Z. Phys. B 91, 429 (1993)

    Article  ADS  Google Scholar 

  12. M.C.G. Passeggi, K.W.H. Stevens, J. Phys. C 6, 98 (1973)

    Article  ADS  Google Scholar 

  13. M. Abou-Ghantous, C.A. Bates, I. Clark, J.R. Fletcher, P.C. Jaussaud, W.S. Moore, J. Phys. C 7, 2707 (1974)

    Article  ADS  Google Scholar 

  14. M. Abou-Ghantous, P.C. Jaussaud, C.A. Bates, J.R. Fletcher, J. Phys. C 8, 3641 (1975)

    Article  ADS  Google Scholar 

  15. M.D. Kaplan, B.G. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals (Plenum Press, New York, 1995)

  16. G.A. Gehring, K.A. Gehring, Rep. Prog. Phys. 38, 1 (1975)

    Article  ADS  Google Scholar 

  17. J.L. Dunn, H. Li, Phys. Rev. B 71, 115411 (2005)

    Article  ADS  Google Scholar 

  18. J.L. Dunn, Phys. Rev. B 69, 64303 (2004)

    Article  ADS  Google Scholar 

  19. G.A. Petrakovskiǐ, L.I. Ryabinkina, D.A. Velikanov, S.S. Aplesnin, G.M. Abramova, N.I. Kiselev, A.F. Bobina, Phys. Solid State 41, 1520 (1999)

    Article  ADS  Google Scholar 

  20. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997)

    Article  ADS  Google Scholar 

  21. L. Forró, L. Mihály, Rep. Prog. Phys. 64, 649 (2001)

    Article  ADS  Google Scholar 

  22. R. Moret, Acta Cryst. A61, 62 (2005)

    Article  Google Scholar 

  23. P. Saint-Gregoire, R. Almairac, E. Snoeck, J. Moret, V. Kopsky, Ferroelectrics 221, 37 (1999)

    Article  Google Scholar 

  24. M. Côté, J.C. Grossman, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 81, 697 (1998)

    Article  ADS  Google Scholar 

  25. A. El Atri, M. Saber, Phys. Stat. Sol. B 184, 187 (1994)

    Article  ADS  Google Scholar 

  26. C.Z. Yang, J.L. Zhong, Phys. Stat. Sol. B 153, 323 (1989)

    Article  ADS  Google Scholar 

  27. R. Honmura, T. Kaneyoshi, Prog. Theor. Phys. 60, 635 (1978)

    Article  ADS  Google Scholar 

  28. T. Kaneyoshi, M. Jaščur, I.P. Fittipaldi, Phys. Rev. B 48, 250 (1993)

    Article  ADS  Google Scholar 

  29. M. Abou Ghantous, E.A. Moujaes, J.L. Dunn, A. Khater, Eur. Phys. J. B 85, 178 (2012)

    Article  ADS  Google Scholar 

  30. A. Aharony, Phys. Rev. B 18, 3318 (1978)

    Article  ADS  Google Scholar 

  31. M. Barati, A. Ramazani, Phys. Rev. B 62, 12130 (2000)

    Article  ADS  Google Scholar 

  32. P.G. De Gennes, Solid State Commun. 1, 132 (1963)

    Article  ADS  Google Scholar 

  33. R.B. Stinchcombe, J. Phys. C 6, 2459 (1973)

    Article  ADS  Google Scholar 

  34. R.J. Elliott et al., J. Phys. C 4, L179 (1971)

    Article  ADS  Google Scholar 

  35. P.J. Flory, J. Am. Chem. Soc. 63, 3083 (1941)

    Article  Google Scholar 

  36. W.H. Stockmayer, J. Chem. Phys. 11, 45 (1943)

    ADS  Google Scholar 

  37. D. Stauffer, Introduction to Percolation Theory, 1st edn. (Taylor and Francis, London, 1985)

  38. S.R. Broadbent, J.M. Hammersley, Proc. Cambridge Philos. Soc. 53, 629 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. S. Havlin, A. Bunde, J. Kiefer, J. Phys. A 19, L419 (1986)

    Article  ADS  Google Scholar 

  40. J.W. Essam, Rep. Prog. Phys. 43, 833 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  41. H. Dickinson, J. Yeomans, J. Phys. C 16, L34S (1983)

    Article  Google Scholar 

  42. N. Benayad, A. Benyoussef, N. Boccara, J. Phys. C 18, 1899 (1985)

    Article  ADS  Google Scholar 

  43. J.B Santos Filho, N.O. Moreno, D.F. de Albuquerque, A.S. de Arruda, Physica B 398, 294 (2007)

    Article  ADS  Google Scholar 

  44. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  45. X.F. Jiang, J. Magn. Magn. Mater. 134, 167 (1994)

    Article  ADS  Google Scholar 

  46. L.L. Deng, S.L. Yan, J. Magn. Magn. Mater. 251, 138 (2002)

    Article  ADS  Google Scholar 

  47. S.L. Yan, L.L. Deng, Physica A 308, 301 (2002)

    Article  MATH  ADS  Google Scholar 

  48. K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)

    Article  ADS  Google Scholar 

  49. G.M. Zhang, C.Z. Yang, Acta Physica Sinica 42, 128 (1993)

    Google Scholar 

  50. A. Khater, M. Abou Ghantous, J. Magn. Magn. Mater. 323, 2717 (2011)

    Article  ADS  Google Scholar 

  51. M. Abou Ghantous, K. Khater, J. Magn. Magn. Mater. 323, 2504 (2011)

    Article  ADS  Google Scholar 

  52. M.A. Moore, H.C. Williams, J. Phys. C 5, 3168 (1972)

    Article  ADS  Google Scholar 

  53. M. Abou Ghantous, A. Khater, Mod. Appl. Sci. 7, 63 (2013)

    Google Scholar 

  54. H. Polat, Ü. Akínc, Í. Sökmen, Phys. Stat. Sol. B 240, 189 (2003)

    Article  ADS  Google Scholar 

  55. T. Kaneyoshi, Acta Physica Polonica 83, 703 (1993)

    Google Scholar 

  56. J.W. Tucker, J. Phys. A 27, 659 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. F.C. SáBarretto, I.P. Fittipaldi, Physica A 129, 360 (1985)

    Article  ADS  Google Scholar 

  58. R. Honmura, T. Kaneyoshi, J. Phys. C 12, 3979 (1979)

    Article  ADS  Google Scholar 

  59. C. Autret, C. Martin, A. Maignan, M. Hervieu, B. Raveau, G. André, F. Bourée, A. Kurbakov, V. Trounov, J. Magn. Magn. Mater. 241, 303 (2002)

    Article  ADS  Google Scholar 

  60. C.H. Gardiner, A.T. Boothroyd, P. Pattison, M.J. McKelvy, G.J. McIntyre, S.J.S. Lister, Phys. Rev. B 70, 024415 (2004)

    Article  ADS  Google Scholar 

  61. D. Ippolito, L. Martinelli, G. Bevilacqua, J. Phys.: Condens. Matter 20, 175218 (2008)

    Article  ADS  Google Scholar 

  62. J.M. Hammersley, Proc. Cambridge Philos. Soc. 53, 642 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. M. Kerouad, M. Saber, Phys. Stat. Sol. B 168, 597 (1991)

    Article  ADS  Google Scholar 

  64. V.A. Vyssotsky, S.B. Gordon, H.L. Frisch, J.M. Hammersley, Phys. Rev. 123, 1566 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  65. L. Tóth, M. Tóthová, Phys. Stat. Sol. B 186, K19 (1994)

    Article  ADS  Google Scholar 

  66. Ü. Akinci, Y. Yüksel, H. Polat, Physica A 390, 541 (2011)

    Article  ADS  Google Scholar 

  67. Y. Canpolat, A. Torgürsül, H. Polat, Phys. Scr. 76, 597 (2007)

    Article  MATH  ADS  Google Scholar 

  68. M. Abou Ghantous, E.A. Moujaes, J.L. Dunn, XXI International Symposium on the Jahn-Teller Effect: Physics and Chemistry of Symmetry Breaking, Tsukuba, Japan, 2012

  69. I.B. Bersuker, Phys. Lett. 20, 589 (1966)

    Article  ADS  Google Scholar 

  70. I.B. Bersuker, B.G. Vekhter, Sov. Phys. Solid State 9, 2452 (1967)

    Google Scholar 

  71. M. Abou Ghantous, A. Khater, V. Ashokan D. Dagher, J. Appl. Phys. 113, 094303 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie A. Moujaes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moujaes, E.A., Abou Ghantous, M. Percolation features of cooperative Jahn-Teller systems: Ising EFT framework. Eur. Phys. J. B 87, 178 (2014). https://doi.org/10.1140/epjb/e2014-50084-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50084-6

Keywords

Navigation