Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

  • Oleg Korotchenkov
  • Andriy Nadtochiy
  • Vasyl Kuryliuk
  • Chin-Chi Wang
  • Pei-Wen Li
  • Andres Cantarero
Regular Article

Abstract

The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A. Majumdar, Science 303, 777 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    M.-T. Hung, C.-C. Wang, J.-C. Hsu, J.-Y. Chiou, S.-W. Lee, T.M. Hsu, P.-W. Li, Appl. Phys. Lett. 101, 251913 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Liu, A. Khitun, K.L. Wang, W.L. Liu, G. Chen, Q.H. Xie, S.G. Thomas, Phys. Rev. B 67, 165333 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A. Yadav, K.P. Pipe, W. Ye, R.S. Goldman, J. Appl. Phys. 105, 093711 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, Y. Shiraki, Appl. Phys. Lett. 63, 1258 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    H. Li, R.L. Stolk, C.H.M. van der Werf, R.H. Franken, J.K. Rath, R.E.I. Schropp, J. Non-Cryst. Solids 352, 1941 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Stangl, V. Holý, G. Bauer, Rev. Mod. Phys. 76, 725 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    W.T. Lai, P.W. Li, Nanotechnology 18, 145402 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    K.H. Chen, C.Y. Chien, W.T. Lai, P.W. Li, Nanotechnology 21, 055302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C.Y. Chien, Y.R. Chang, R.N. Chang, M.S. Lee, W.Y. Chen, T.M. Hsu, P.W. Li, Nanotechnology 21, 505201 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Sanguinetti, K. Watanabe, T. Kuroda, F. Minami, Y. Gotoh, N. Koguchi, J. Cryst. Growth 242, 321 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    C.Y. Chien, Y.J. Chang, K.H. Chen, W.T. Lai, T. George, A. Scherer, P.W. Li, Nanotechnology 22, 435602 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, New Jersey, 2006), pp. 61–75Google Scholar
  18. 18.
    G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z. Bian, Y. Zhang, A. Shakouri, S.L. Singer, A. Majumdar, J. Appl. Phys. 101, 034502 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    P. Wang, A. Bar-Cohen, B. Yang, G.L. Solbrekken, A. Shakouri, J. Appl. Phys. 100, 014501 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    V. Kuryliuk, O. Korotchenkov, A. Cantarero, Phys. Rev. B 85, 075406 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    D.J. Lockwood, J.M. Baribeau, Phys. Rev. B 45, 8565 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Temple, C.E. Hathaway, Phys. Rev. B 7, 3685 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics (Holt Saunders, London, 1983)Google Scholar
  25. 25.
    P. Pichanusakorn, P.R. Bandaru, J. Appl. Phys. 107, 074304 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    C.M. Bhandari, D.M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988)Google Scholar
  27. 27.
    J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2003)Google Scholar
  28. 28.
    L.H. Chien, A. Sergeev, N. Vagidov, V. Mitin, Int. J. High Speed Electron. Syst. 18, 1013 (2008)CrossRefGoogle Scholar
  29. 29.
    L. Dobaczewski, A.R. Peaker, K.B. Nielsen, J. Appl. Phys. 96, 4689 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    A. Popescu, L.M. Woods, J. Martin, G.S. Nolas, Phys. Rev. B 79, 205302 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    C.M.A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner, G. Abstreiter, Appl. Phys. Lett. 77, 4169 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Balandin, O.L. Lazarenkova, Appl. Phys. Lett. 82, 415 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oleg Korotchenkov
    • 1
    • 2
  • Andriy Nadtochiy
    • 2
  • Vasyl Kuryliuk
    • 2
  • Chin-Chi Wang
    • 3
  • Pei-Wen Li
    • 3
  • Andres Cantarero
    • 1
  1. 1.Materials Science Institute, University of ValenciaValenciaSpain
  2. 2.Department of PhysicsTaras Shevchenko National University of KyivKyivUkraine
  3. 3.Department of Electrical Engineering and the Center for Nano Science and TechnologyNational Central UniversityChungLiTaiwan

Personalised recommendations