Skip to main content
Log in

Quantum friction controlled by plasmons between graphene sheets

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically study quantum friction between two infinite graphene sheets, which is controlled by plasmons excited at the interfaces of graphenes and dielectrics. In near-field regime, quantum friction can be enhanced due to the coupling of plasmons between two graphene sheets. Dependences of friction coefficient on distance, chemical potential of graphene, temperature of environment, and dielectric constant of substrate have been investigated in detail. Friction coefficient can be increased by increasing temperature or dielectric constants of substrates, and can be reduced by increasing distance or chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Gotsmann, H. Fuchs, Phys. Rev. Lett. 86, 2597 (2001)

    Article  ADS  Google Scholar 

  2. B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, D. Rugar, Phys. Rev. Lett. 87, 096801 (2001)

    Article  ADS  Google Scholar 

  3. S. Kuehn, R.F. Loring, J.A. Marohn, Phys. Rev. Lett. 96, 156103 (2006)

    Article  ADS  Google Scholar 

  4. I. Dorofeyev, H. Fuchs, G. Wenning, B. Gotsmann, Phys. Rev. Lett. 83, 2402 (1999)

    Article  ADS  Google Scholar 

  5. A.A. Chumak, P.W. Milonni, G.P. Berman, Phys. Rev. B 70, 085407 (2004)

    Article  ADS  Google Scholar 

  6. J.R. Zurita-Sánchez, J.-J. Greffet, L. Novotny, Phys. Rev. A 69, 022902 (2004)

    Article  ADS  Google Scholar 

  7. J.B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997)

    Article  ADS  Google Scholar 

  8. A.I. Volokitin, B.N.J. Persson, J. Phys.: Condens. Matter 13, 859 (2001)

    Article  ADS  Google Scholar 

  9. A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 65, 115419 (2002)

    Article  ADS  Google Scholar 

  10. A.I. Volokitin, B.N.J. Persson, Phys. Rev. Lett. 91, 106101 (2003)

    Article  ADS  Google Scholar 

  11. A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 65, 115420 (2002)

    Article  ADS  Google Scholar 

  12. A.I. Volokitin, B.N.J. Persson, Phys. Rev. Lett. 94, 086104 (2005)

    Article  ADS  Google Scholar 

  13. A.I. Volokitin, B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007)

    Article  ADS  Google Scholar 

  14. A.I. Volokitin, B.N.J. Persson, Phys. Rev. Lett. 106, 094502 (2011)

    Article  ADS  Google Scholar 

  15. A. Manjavacas, F.J. García de Abajo, Phys. Rev. Lett. 105, 113601 (2010)

    Article  ADS  Google Scholar 

  16. A. Manjavacas, F.J. García de Abajo, Phys. Rev. A 82, 063827 (2010)

    Article  ADS  Google Scholar 

  17. R. Zhao, A. Manjavacas, F. Javier García de Abajo, J.B. Pendry, Phys. Rev. Lett. 109, 123604 (2012)

    Article  ADS  Google Scholar 

  18. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  19. Z. Liu, J. Yang, F. Grey, J.Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, Q. Zheng, Phys. Rev. Lett. 108, 205503 (2012)

    Article  ADS  Google Scholar 

  20. J. Yang, Z. Liu, F. Grey, Z. Xu, X. Li, Y. Liu, M. Urbakh, Y. Cheng, Q. Zheng, Phys. Rev. Lett. 110, 255504 (2013)

    Article  ADS  Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  23. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  24. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  25. L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  26. L.A. Falkovsky, J. Phys.: Conf. Ser. 129, 012004 (2008)

    Article  ADS  Google Scholar 

  27. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  28. X. Feng, S. Kwon, J. Young Park, M. Salmeron, ACS Nano 7, 1718 (2013)

    Article  Google Scholar 

  29. S.A. Mikhailov, K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007)

    Article  ADS  Google Scholar 

  30. M. Jablan, H. Buljan, M. Soljacic, Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  31. O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljaèiæ, Phys. Rev. B 85, 155422 (2012)

    Article  ADS  Google Scholar 

  32. K.B. Jinesh, S.Yu. Krylov, H. Valk, M. Dienwiebel, J.W.M. Frenken, Phys. Rev. B 78, 155440 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Biao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TB., Liu, NH., Liu, JT. et al. Quantum friction controlled by plasmons between graphene sheets. Eur. Phys. J. B 87, 185 (2014). https://doi.org/10.1140/epjb/e2014-50072-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50072-x

Keywords

Navigation