Next generation interatomic potentials for condensed systems

Colloquium

Abstract

The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.

Keywords

Computational Methods 

References

  1. 1.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1989)Google Scholar
  2. 2.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985) ADSGoogle Scholar
  3. 3.
    D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009) Google Scholar
  4. 4.
    A.P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta, J. Phys. C 21, 35 (1988)ADSGoogle Scholar
  5. 5.
    C.M. Goringe, D.R. Bowler, E. Hernandez, Rep. Prog. Phys. 60, 1447 (1997) ADSGoogle Scholar
  6. 6.
    M. Elstner, Theor. Chem. Acc. 116, 316 (2006) Google Scholar
  7. 7.
    L. Colombo, Comput. Mater. Sci. 12, 278 (1998)Google Scholar
  8. 8.
    T. Hammerschmidt, R. Drautz, D.G. Pettifor, Int. J. Mater. Res. 100, 1479 (2009) Google Scholar
  9. 9.
    N. Allinger, in Advances in Physical Organic Chemistry (Academic Press, 1976), Vol. 13, pp. 1–82Google Scholar
  10. 10.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)Google Scholar
  11. 11.
    A.C.T van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, J. Phys. Chem. A 105, 9396 (2001)Google Scholar
  12. 12.
    A. Warshel, R.M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980) Google Scholar
  13. 13.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986)ADSGoogle Scholar
  14. 14.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988) ADSGoogle Scholar
  15. 15.
    D.W. Brenner, Phys. Rev. B 42, 9458 (1990) ADSGoogle Scholar
  16. 16.
    E. Pijper, G.-J. Kroes, R.A. Olsen, E.J. Baerends, J. Chem. Phys. 117, 5885 (2002) ADSGoogle Scholar
  17. 17.
    M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993)Google Scholar
  18. 18.
    M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987) ADSGoogle Scholar
  19. 19.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954) MATHADSGoogle Scholar
  20. 20.
    Th. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, Phys. Stat. Sol. B 217, 41 (2000)ADSGoogle Scholar
  21. 21.
    D.A. Papaconstantopoulos, M.J. Mehl, J. Phys.: Condens. Matter 15, R413 (2003) ADSGoogle Scholar
  22. 22.
    R. Hoffman, J. Chem. Phys. 39, 1397 (1963) ADSGoogle Scholar
  23. 23.
    R.J. Deeth, Coord. Chem. Rev. 212, 11 (2001)Google Scholar
  24. 24.
    R.J. Deeth, A. Anastasi, C. Diedrich, K. Randell, Coord. Chem. Rev. 253, 795 (2009) Google Scholar
  25. 25.
    A. Brown, B.J. Braams, K.M. Christoffel, Z. Jin, J.M. Bowman, J. Chem. Phys. 119, 8790 (2003) ADSGoogle Scholar
  26. 26.
    Z. Xie, J.M. Bowman, J. Chem. Theory Comput. 6, 26 (2010)Google Scholar
  27. 27.
    B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)Google Scholar
  28. 28.
    Y. Wang, B.C. Shepler, B.J. Braams, J.M. Bowman, J. Chem. Phys. 131, 054511 (2009) ADSGoogle Scholar
  29. 29.
    X. Huang, B.J. Braams, J.M. Bowman, J. Phys. Chem. A 110, 445 (2006) Google Scholar
  30. 30.
    X. Huang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 122, 044308 (2005) ADSGoogle Scholar
  31. 31.
    A.R. Sharma, B.J. Braams, S. Carter, B.C. Shepler, J.M. Bowman, J. Chem. Phys. 130, 174301 (2009) ADSGoogle Scholar
  32. 32.
    C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, 2006)Google Scholar
  33. 33.
    C.M. Handley, G.I. Hawe, D.B. Kell, P.L.A. Popelier, Phys. Chem. Chem. Phys. 11, 6365 (2009) Google Scholar
  34. 34.
    M.J.L. Mills, P.L.A. Popelier, Comput. Theor. Chem. 975, 42 (2011)Google Scholar
  35. 35.
    M.J.L. Mills, P.L.A. Popelier, Theor. Chem. Acc. 131, 1 (2012)Google Scholar
  36. 36.
    M.J.L. Mills, G.I. Hawe, C.M. Handley, P.L.A. Popelier, Phys. Chem. Chem. Phys. 15, 18249 (2013) Google Scholar
  37. 37.
    T.J. Hughes, S.M. Kandathil, P.L.A. Popelier, Spectrochim. Acta A Mol. Biomol. Spectrosc., in press (2013), DOI:10.1016/j.saa.2013.10.059
  38. 38.
    A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013) ADSGoogle Scholar
  39. 39.
    A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010) ADSGoogle Scholar
  40. 40.
    A.P. Bartók, M.J. Gillan, F.R. Manby, G. Csányi, Phys. Rev. B 88, 054104 (2013) ADSGoogle Scholar
  41. 41.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1998)ADSGoogle Scholar
  42. 42.
    A.D. Becke, Phys. Rev. A 38, 3098 (1998) ADSGoogle Scholar
  43. 43.
    M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012) ADSGoogle Scholar
  44. 44.
    K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9, 3404 (2013)Google Scholar
  45. 45.
    M. Rupp, M.R. Bauer, R. Wilcken, A. Lange, M. Reutlinger, F.M. Boeckler, G. Schneider, PLoS Comput. Biol. 10, e1003400 (2014) ADSGoogle Scholar
  46. 46.
    P. Lancaster, K. Salkauskas, Curve and Surface Fitting: An Introduction (Academic Press, 1986)Google Scholar
  47. 47.
    J. Ischtwan, M.A. Collins, J. Chem. Phys. 100, 8080 (1994) ADSGoogle Scholar
  48. 48.
    M.J.T. Jordan, K.C. Thompson, M.A. Collins, J. Chem. Phys. 103, 9669 (1995) ADSGoogle Scholar
  49. 49.
    M.J.T. Jordan, M.A. Collins, J. Chem. Phys. 104, 4600 (1996) ADSGoogle Scholar
  50. 50.
    T. Wu, H.-J. Werner, U. Manthe, Science 306, 2227 (2004) ADSGoogle Scholar
  51. 51.
    T. Wu, H.-J. Werner, U. Manthe, J. Chem. Phys. 124, 164307 (2006) ADSGoogle Scholar
  52. 52.
    T. Takata, T. Taketsugu, K. Hiaro, M.S. Gordon, J. Chem. Phys. 109, 4281 (1998) ADSGoogle Scholar
  53. 53.
    C.R. Evenhuis, U. Manthe, J. Chem. Phys. 129, 024104 (2008) ADSGoogle Scholar
  54. 54.
    C. Crespos, M.A. Collins, E. Pijper, G.J. Kroes, Chem. Phys. Lett. 376, 566 (2003) ADSGoogle Scholar
  55. 55.
    C. Crespos, M.A. Collins, E. Pijper, G.J. Kroes, J. Chem. Phys. 120, 2392 (2004) ADSGoogle Scholar
  56. 56.
    D.H. McLain, Comput. J. 17, 318 (1974)Google Scholar
  57. 57.
    T. Ishida, G.C. Schatz, Chem. Phys. Lett. 314, 369 (1999) ADSGoogle Scholar
  58. 58.
    R. Dawes, D.L. Thompson, Y. Guo, A.F. Wagner, M. Minkoff, J. Chem. Phys. 126, 184108 (2007) ADSGoogle Scholar
  59. 59.
    R. Dawes, D.L. Thompson, A.F. Wagner, M. Minkoff, J. Chem. Phys. 128, 084107 (2008) ADSGoogle Scholar
  60. 60.
    G.G. Maisuradze, D.L. Thompson, A.F. Wagner, M. Minkoff, J. Chem. Phys. 119, 10002 (2003) ADSGoogle Scholar
  61. 61.
    Y. Guo, A. Kawano, D.L. Thompson, A.F. Wagner, M. Minkoff, J. Chem. Phys. 121, 5091 (2004) ADSGoogle Scholar
  62. 62.
    R. Dawes, A.F. Wagner, D.L. Thompson, J. Phys. Chem. A 113, 4709 (2009) Google Scholar
  63. 63.
    J.P. Camden, R. Dawes, D.L. Thompson, J. Phys. Chem. A 113, 4626 (2009) Google Scholar
  64. 64.
    R. Dawes, X.-G Wang, T. Carrington, J. Phys. Chem. A 117, 7612 (2013) Google Scholar
  65. 65.
    R. Dawes, X.-G. Wang, A.W. Jasper, T. Carrington, J. Chem. Phys. 133, 134304 (2010) ADSGoogle Scholar
  66. 66.
    J. Brown, X.-G. Wang, R. Dawes, T. Carrington, J. Chem. Phys. 136, 134306 (2012) ADSGoogle Scholar
  67. 67.
    G. Li, J. Hu, S.-W. Wang, P.G. Georgopoulos, J. Schoendorf, H. Rabitz, J. Phys. Chem. A 110, 2474 (2006) Google Scholar
  68. 68.
    A. Kawano, I.V. Tokmakov, D.L. Thompson, A.F. Wagner, M. Minkoff, J. Chem. Phys. 124, 054105 (2006) ADSGoogle Scholar
  69. 69.
    C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 1996)Google Scholar
  70. 70.
    S. Haykin, Neural Networks and Learning Machines (Pearson Education, 1986)Google Scholar
  71. 71.
    W. McCulloch, W. Pitts, Bull. Math. Biophys. 5, 115 (1943)MATHMathSciNetGoogle Scholar
  72. 72.
    J. Gasteiger, J. Zupan, Angew. Chem. Int. Ed. 32, 503 (1993)Google Scholar
  73. 73.
    T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103, 4129 (1995) ADSGoogle Scholar
  74. 74.
    E. Tafeit, W. Estelberger, R. Horejsi, R. Moeller, K. Oettl, K. Vrecko, G. Reibnegger, J. Mol. Graphics 14, 12 (1996)Google Scholar
  75. 75.
    F.V. Prudente, P.H. Acioli, J.J. Soares Neto, J. Chem. Phys. 109, 8801 (1998)ADSGoogle Scholar
  76. 76.
    H. Gassner, M. Probst, A. Lauenstein, K. Hermansson, J. Phys. Chem. A 102, 4596 (1998) Google Scholar
  77. 77.
    S. Lorenz, A. Groß, M. Scheffler, Chem. Phys. Lett. 395, 210 (2004) ADSGoogle Scholar
  78. 78.
    J. Behler, S. Lorenz, K. Reuter, J. Chem. Phys. 127, 014705 (2007) ADSGoogle Scholar
  79. 79.
    J. Ludwig, D.G. Vlachos, J. Chem. Phys. 127, 154716 (2007) ADSGoogle Scholar
  80. 80.
    C.M. Handley, P.L.A. Popelier, J. Phys. Chem. A 114, 3371 (2010) Google Scholar
  81. 81.
    J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011) Google Scholar
  82. 82.
    J. Behler, J. Phys.: Condens. Matter 26, 183001 (2014) ADSGoogle Scholar
  83. 83.
    S. Haykin, Neural Networks: A Comprehensive Foundation (Macmillan College Publishing Company, 1994) Google Scholar
  84. 84.
    G. Cybenko, Math. Control Signals Systems 2, 303 (1989)MATHMathSciNetGoogle Scholar
  85. 85.
    K. Hornik, M. Stinchcombe, H. White, Neural Netw. 2, 359 (1989)Google Scholar
  86. 86.
    D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533 (1986) ADSGoogle Scholar
  87. 87.
    T.B. Blank, S.D. Brown, J. Chemometrics 8, 391 (1994)Google Scholar
  88. 88.
    A. Pukrittayakamee, M. Malshe, M. Hagan, L.M. Raff, R. Narulkar, S. Bukkapatnum, R. Komanduri, J. Chem. Phys. 130, 134101 (2009) ADSGoogle Scholar
  89. 89.
    N. Artrith, J. Behler, Phys. Rev. B 85, 045439 (2012) ADSGoogle Scholar
  90. 90.
    K.-H. Cho, K.-H. No, H.A. Scheraga, J. Mol. Struct. 641, 77 (2002)ADSGoogle Scholar
  91. 91.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, J. Chem. Phys. 79, 962 (1983)Google Scholar
  92. 92.
    S. Manzhos, T. Carrington, J. Chem. Phys. 125, 84109 (2006) Google Scholar
  93. 93.
    S. Manzhos, T. Carrington, J. Chem. Phys. 125, 194105 (2006) ADSGoogle Scholar
  94. 94.
    S. Manzhos, T. Carrington, J. Chem. Phys. 127, 014103 (2007) ADSGoogle Scholar
  95. 95.
    S. Manzhos, T. Carrington, J. Chem. Phys. 129, 224104 (2008) ADSGoogle Scholar
  96. 96.
    M. Malshe, R. Narulkar, L.M. Raff, M. Hagan, S. Bukkapatnam, P.M. Agrawal, R. Komanduri, J. Chem. Phys. 130, 184101 (2009) ADSGoogle Scholar
  97. 97.
    S. Hobday, R. Smith, J. BelBruno, Modelling Simul. Mater. Sci. Eng. 7, 397 (1999)ADSGoogle Scholar
  98. 98.
    S. Hobday, R. Smith, J. BelBruno, Nucl. Instrum. Methods Phys. Res. B 153, 247 (1999) ADSGoogle Scholar
  99. 99.
    A. Bholoa, S.D. Kenny, R. Smith, Nucl. Instrum. Methods Phys. Res. B 255, 1 (2007)ADSGoogle Scholar
  100. 100.
    E. Sanville, A. Bholoa, R. Smith, S.D. Kenny, J. Phys.: Condens. Matter 20, 285219 (2008) Google Scholar
  101. 101.
    J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007) ADSGoogle Scholar
  102. 102.
    J. Behler, J. Chem. Phys. 134, 074106 (2011) ADSGoogle Scholar
  103. 103.
    N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B 83, 153101 (2011) ADSGoogle Scholar
  104. 104.
    T. Morawietz, V. Sharma, J. Behler, J. Chem. Phys. 136, 064103 (2012) ADSGoogle Scholar
  105. 105.
    J. Behler, R. Martoňák, D. Donadio, M. Parrinello, Phys. Rev. Lett. 100, 185501 (2008) ADSGoogle Scholar
  106. 106.
    R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. B 81, 100103 (2010) ADSGoogle Scholar
  107. 107.
    H. Eshet, R.Z. Khaliullin, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. B 81, 184107 (2010) ADSGoogle Scholar
  108. 108.
    N. Artrith, J. Behler, Phys. Rev. B 85, 045439 (2012) ADSGoogle Scholar
  109. 109.
    G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85, 174103 (2012) ADSGoogle Scholar
  110. 110.
    N. Artrith, B. Hiller, J. Behler, Phys. Stat. Sol. B 250, 1191 (2013) ADSGoogle Scholar
  111. 111.
    T. Morawietz, J. Behler, J. Phys. Chem. A 117, 7356 (2013) Google Scholar
  112. 112.
    T. Morawietz, J. Behler, Z. Phys. Chem. 227, 1559 (2013) Google Scholar
  113. 113.
    S. Houlding, S.Y. Liem, P.L.A. Popelier, Int. J. Quant. Chem. 107, 2817 (2007) Google Scholar
  114. 114.
    M.G. Darley, C.M. Handley, P.L.A. Popelier, J. Chem. Theor. Comput. 4, 1435 (2008)Google Scholar
  115. 115.
    C.M. Handley, P.L.A. Popelier, J. Chem. Theor. Chem. 5, 1474 (2009)Google Scholar
  116. 116.
    P.L.A. Popelier, Atoms in Molecules; An Introduction (Pearson Education, 2000)Google Scholar
  117. 117.
    P.L.A. Popelier, F.M. Aicken, ChemPhysChem 4, 824 (2003)Google Scholar
  118. 118.
    P.L.A. Popelier, A.G. Brémond, Int. J. Quant. Chem. 109, 2542 (2009) ADSGoogle Scholar
  119. 119.
    J. Li, B. Jiang, H. Guo, J. Chem. Phys. 139, 204103 (2013) ADSGoogle Scholar
  120. 120.
    R. Fournier, O. Slava, J. Chem. Phys. 139, 234110 (2013) ADSGoogle Scholar
  121. 121.
    P. Geiger, C. Dellago, J. Chem. Phys. 139, 164105 (2013) ADSGoogle Scholar
  122. 122.
    P.J. Haley, D. Soloway, in International Joint Conference on Neural Networks, IJCNN, 1992, Vol. 4, pp. 25–30Google Scholar
  123. 123.
    A.G. Wilson, E. Gilboa, A. Nehorai, J.P. Cunningham, arXiv:1310.5288v3 (2013)Google Scholar
  124. 124.
    V.N. Vapnik, The Nature of Statistical Learning Theory (Springer-Verlag, 1995)Google Scholar
  125. 125.
    C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)MATHGoogle Scholar
  126. 126.
    Z.R. Yang, Brief. Bioinform. 5, 328 (2004)Google Scholar
  127. 127.
    R.M. Balabin, E.I. Lomakina, Phys. Chem. Chem. Phys. 13, 11710 (2011) Google Scholar
  128. 128.
    W. Chu, S.S. Keerthi, C.J. Ong, IEEE Trans. Neural Networks 15, 29 (2004)Google Scholar
  129. 129.
    A. Vitek, M. Stachon, P. Kromer, V. Snael, in International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2013, pp. 121–126Google Scholar
  130. 130.
    J.R. Koza, Genetic Programming: On the Programing of Computers by Means of Natural Selection (MIT Press, 1992) Google Scholar
  131. 131.
    D.E. Makarov, H. Metiu, J. Chem. Phys. 108, 590 (1998) ADSGoogle Scholar
  132. 132.
    M.A. Bellucci, D.F. Coker, J. Chem. Phys. 135, 044115 (2011) ADSGoogle Scholar
  133. 133.
    M.W. Brown, A.P. Thompson, P.A. Schultz, J. Chem. Phys. 132, 024108 (2010) ADSGoogle Scholar
  134. 134.
    E. Zitzler, L. Thiele, IEEE Trans. Evol. Comput. 3, 257 (1999)Google Scholar
  135. 135.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1998) Google Scholar
  136. 136.
    B. Hartke, Struct. Bond. 110, 33 (2004)Google Scholar
  137. 137.
    A.R. Oganov, C.W. Glass, J. Chem. Phys. 124, 244704 (2006) ADSGoogle Scholar
  138. 138.
    F. Koskowski, B. Hartke, J. Comput. Chem. 26, 1169 (2005) Google Scholar
  139. 139.
    W. Leo Meerts, M. Schmitt, Int. Rev. Phys. Chem. 25, 353 (2006)Google Scholar
  140. 140.
    M.H. Hennessy, A.M. Kelley, Phys. Chem. Chem. Phys. 6, 1085 (2004)Google Scholar
  141. 141.
    J.M.C. Marques, F.V. Prudente, F.B. Pereira, M.M. Almeida, M.M. Maniero, C.E. Fellows, J. Phys. B 41, 085103 (2008) ADSGoogle Scholar
  142. 142.
    W.F. Da Cunha, L.F. Roncaratti, R. Gargano, G.M.E. Silva, Int. J. Quant. Chem. 106, 2650 (2006) ADSGoogle Scholar
  143. 143.
    L.F. Roncaratti, R. Gargano, G.M.E. Silva, J. Mol. Struct. (Theochem) 769, 47 (2006)Google Scholar
  144. 144.
    Y.G. Xu, G.R. Liu, J. Micromech. Microeng. 13, 254 (2003)ADSGoogle Scholar
  145. 145.
    G.L.W. Hart, V. Blum, M.J. Walorski, A. Zunger, Nat. Mater. 4, 391 (2005)ADSGoogle Scholar
  146. 146.
    V. Blum, G.L.W. Hart, M.J. Walorski, A. Zunger, Phys. Rev. B 72, 165113 (2005) ADSGoogle Scholar
  147. 147.
    P. Pahari, S. Chaturvedi, J. Mol. Model. 18, 1049 (2012) Google Scholar
  148. 148.
    H.R. Larsson, A.C.T. van Duin, B.J. Hartke, Comput. Chem. 34, 2178 (2013) Google Scholar
  149. 149.
    C.M. Handley, R.J. Deeth, J. Chem. Theor. Comput. 8, 194 (2012)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische ChemieRuhr-Universität BochumBochumGermany

Personalised recommendations