Abstract
An infinite bent chain of nanospheres connected by wires is considered. We assume that there are δ-like potentials at the contact points. A solvable mathematical model based on the theory of self-adjoint extensions of symmetric operators is constructed. The spectral equation for the model operator is derived in an explicit form. It is shown that the Hamiltonian has non-empty point spectrum. The positions of the eigenvalues for different values of the system parameters (the length of the connecting wires, the intensities of δ-interactions and the bent angle) are found.
This is a preview of subscription content, access via your institution.
References
F. Sols, Ann. Phys. 214, 386 (1992)
V.A. Geyler, I.Yu. Popov, Theor. Math. Phys. 107, 12 (1996)
G. Martin, A.M. Yafyasov, B.S. Pavlov, Nanosystems: Phys. Chem. Math. 1, 108 (2010)
I.Yu. Popov, S.A. Osipov, Chin. Phys. B 21, 117306 (2012)
P. Kuchment, B. Vainberg, Commun. Math. Phys. 268, 673 (2006)
P. Duclos, P. Exner, O. Turek, J. Phys. A 41, 415206 (2008)
I.Yu. Popov, P.I. Smirnov, Phys. Lett. A 377, 439 (2013)
I. Yu. Popov, A.N. Skorynina, I.V. Blinova, J. Math. Phys. 55, 033504 (2014)
S.V. Rotkin, Sh. Subramoney, Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices (Springer, Berlin, 2006)
Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, J. Lin, ACS Nano, 4, 4753 (2010)
Y. Yang, L. Li, W. Li, J. Phys. Chem. C 117, 14142 (2013)
A.N. Enyashin, A.L. Ivanovskii, Nanosystems: Phys. Chem. Math. 1, 63 (2010)
O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Ultramicroscopy 110, 935 (2010)
E. Abou-Hamad, Yo. Kim, A.V. Talyzin, Ch. Goze-Bac, D.E. Luzzi, A. Rubio, T. Wagberg, J. Phys. Chem. C 113, 8583 (2009)
V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Exper. Theor. Phys. 97, 763 (2003)
D.A. Eremin, D.A. Ivanov, I.Yu. Popov, Physica E 44, 1598 (2012)
M. Harmer, B. Pavlov, A. Yafyasov, J. Comp. Electron. 6, 153 (2007)
A. Michailova, B. Pavlov, I. Popov, T. Rudakova, A.M. Yafyasov, Math. Nachr. 235, 101 (2002)
I.S. Lobanov, I.Yu. Popov, Nanosystems: Phys. Chem. Math. 3, 6 (2012)
E. Korotyaev, Commun. Math. Phys. 213, 471 (2000)
Ch. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer-Verlag, Berlin, 1998)
J. Bruning, V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Phys. A 35, 4239 (2002)
N. Bagraev, G. Martin, B.S. Pavlov, A. Yafyasov, Nanosystems: Phys. Chem. Math. 2, 20 (2011)
B.M. Levitan, I.S. Sargsyan, Introduction to Spectral Theory: Self-adjoint Ordinary Differential Operators. (Amer. Math. Soc., Providence, 1975)
M.S. Birman, M.Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Publishing, Dordrecht, 1987)
B.S. Pavlov, Russian Math. Surveys 42, 127 (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eremin, D.A., Ivanov, D.A. & Popov, I.Y. Electron energy spectrum for a bent chain of nanospheres. Eur. Phys. J. B 87, 181 (2014). https://doi.org/10.1140/epjb/e2014-50002-0
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2014-50002-0
Keywords
- Mesoscopic and Nanoscale Systems