Skip to main content

Electron energy spectrum for a bent chain of nanospheres

Abstract

An infinite bent chain of nanospheres connected by wires is considered. We assume that there are δ-like potentials at the contact points. A solvable mathematical model based on the theory of self-adjoint extensions of symmetric operators is constructed. The spectral equation for the model operator is derived in an explicit form. It is shown that the Hamiltonian has non-empty point spectrum. The positions of the eigenvalues for different values of the system parameters (the length of the connecting wires, the intensities of δ-interactions and the bent angle) are found.

This is a preview of subscription content, access via your institution.

References

  1. F. Sols, Ann. Phys. 214, 386 (1992)

    Article  ADS  Google Scholar 

  2. V.A. Geyler, I.Yu. Popov, Theor. Math. Phys. 107, 12 (1996)

    Google Scholar 

  3. G. Martin, A.M. Yafyasov, B.S. Pavlov, Nanosystems: Phys. Chem. Math. 1, 108 (2010)

    Google Scholar 

  4. I.Yu. Popov, S.A. Osipov, Chin. Phys. B 21, 117306 (2012)

    Article  ADS  Google Scholar 

  5. P. Kuchment, B. Vainberg, Commun. Math. Phys. 268, 673 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. P. Duclos, P. Exner, O. Turek, J. Phys. A 41, 415206 (2008)

    Article  MathSciNet  Google Scholar 

  7. I.Yu. Popov, P.I. Smirnov, Phys. Lett. A 377, 439 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Yu. Popov, A.N. Skorynina, I.V. Blinova, J. Math. Phys. 55, 033504 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  9. S.V. Rotkin, Sh. Subramoney, Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices (Springer, Berlin, 2006)

  10. Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, J. Lin, ACS Nano, 4, 4753 (2010)

    Article  Google Scholar 

  11. Y. Yang, L. Li, W. Li, J. Phys. Chem. C 117, 14142 (2013)

    Article  ADS  Google Scholar 

  12. A.N. Enyashin, A.L. Ivanovskii, Nanosystems: Phys. Chem. Math. 1, 63 (2010)

    Google Scholar 

  13. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Ultramicroscopy 110, 935 (2010)

    Article  Google Scholar 

  14. E. Abou-Hamad, Yo. Kim, A.V. Talyzin, Ch. Goze-Bac, D.E. Luzzi, A. Rubio, T. Wagberg, J. Phys. Chem. C 113, 8583 (2009)

    Article  Google Scholar 

  15. V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Exper. Theor. Phys. 97, 763 (2003)

    Article  ADS  Google Scholar 

  16. D.A. Eremin, D.A. Ivanov, I.Yu. Popov, Physica E 44, 1598 (2012)

    Article  ADS  Google Scholar 

  17. M. Harmer, B. Pavlov, A. Yafyasov, J. Comp. Electron. 6, 153 (2007)

    Article  Google Scholar 

  18. A. Michailova, B. Pavlov, I. Popov, T. Rudakova, A.M. Yafyasov, Math. Nachr. 235, 101 (2002)

    Article  MathSciNet  Google Scholar 

  19. I.S. Lobanov, I.Yu. Popov, Nanosystems: Phys. Chem. Math. 3, 6 (2012)

    Google Scholar 

  20. E. Korotyaev, Commun. Math. Phys. 213, 471 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Ch. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer-Verlag, Berlin, 1998)

  22. J. Bruning, V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Phys. A 35, 4239 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Bagraev, G. Martin, B.S. Pavlov, A. Yafyasov, Nanosystems: Phys. Chem. Math. 2, 20 (2011)

    Google Scholar 

  24. B.M. Levitan, I.S. Sargsyan, Introduction to Spectral Theory: Self-adjoint Ordinary Differential Operators. (Amer. Math. Soc., Providence, 1975)

  25. M.S. Birman, M.Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Publishing, Dordrecht, 1987)

  26. B.S. Pavlov, Russian Math. Surveys 42, 127 (1987)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Yu. Popov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eremin, D.A., Ivanov, D.A. & Popov, I.Y. Electron energy spectrum for a bent chain of nanospheres. Eur. Phys. J. B 87, 181 (2014). https://doi.org/10.1140/epjb/e2014-50002-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50002-0

Keywords

  • Mesoscopic and Nanoscale Systems