Bundle versus network conductivity of carbon nanotubes separated by type


We report wide-range optical investigations on transparent conducting networks made from separated (semiconducting, metallic) and reference (mixed) single-walled carbon nanotubes, complemented by transport measurements. Comparing the intrinsic frequency-dependent conductivity of the nanotubes with that of the networks, we conclude that higher intrinsic conductivity results in better transport properties, indicating that the properties of the nanotubes are at least as much important as the contacts. We find that HNO3 doping offers a larger improvement in transparent conductive quality than separation. Spontaneous dedoping occurs in all samples but is most effective in films made of doped metallic tubes, where the sheet conductance returns close to its original value within 24 h.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Gruner, J. Mater. Chem. 16, 3533 (2006)

    Article  Google Scholar 

  2. 2.

    D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011)

    Article  Google Scholar 

  3. 3.

    A.A. Green, M.C. Hersam, Nano Lett. 8, 1417 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    F. Lu, M.J. Meziani, L. Cao, Y.P. Sun, Langmuir 27, 4339 (2011)

    Article  Google Scholar 

  5. 5.

    J.L. Blackburn, T.M. Barnes, M.C. Beard, Y.H. Kim, R.C. Tenent, T.J. McDonald, B. To, J. Coutts, M.J. Heben, ACS Nano 2, 1266 (2008)

    Article  Google Scholar 

  6. 6.

    T.M. Barnes, J.L. Blackburn, J. van de Lagemaat, T.J. Coutts, M.J. Heben, ACS Nano 2, 1968 (2008)

    Article  Google Scholar 

  7. 7.

    M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Science 288, 494 (2000)

    ADS  Article  Google Scholar 

  8. 8.

    M.P. Garrett, I.N. Ivanov, R.A. Gerhardt, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. 97, 163105 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    K. Kamarás, Á. Pekker, B. Botka, H. Hu, S. Niyogi, M.E. Itkis, R.C. Haddon, Phys. Stat. Sol. B 247, 2754 (2010)

    Article  Google Scholar 

  10. 10.


  11. 11.


  12. 12.

    Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    Á. Pekker, K. Kamarás, Phys. Rev. B 84, 075475 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    W. Zhou, J. Vavro, N.M. Nemes, J.E. Fischer, F. Borondics, K. Kamarás, D.B. Tanner, Phys. Rev. B 71, 205423 (2005)

    ADS  Article  Google Scholar 

  15. 15.

    F. Keilmann, R. Hillenbrand, in Nano-Optics and near-field optical microscopy, edited by D. Richards, A. Zayats (Artech House, Boston, London, 2009), p. 235

  16. 16.

    N. Ocelic, A. Huber, R. Hillenbrand, Appl. Phys. Lett. 89, 101124 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    S. Amarie, P. Zaslansky, Y. Kajihara, E. Griesshaber, W. Schmahl, F. Keilmann, Beilstein J. Nanotechnol. 3, 312 (2012)

    Article  Google Scholar 

  18. 18.

    A. Cvitkovic, N. Ocelic, R. Hillenbrand, Nano Lett. 7, 3177 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000)

    ADS  Article  Google Scholar 

  20. 20.

    J. van der Pauw, Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  21. 21.

    E. Bekyarova, M.E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, R.C. Haddon, J. Am. Chem. Soc. 127, 5990 (2005)

    Article  Google Scholar 

  22. 22.

    F. Borondics, K. Kamarás, M. Nikolou, D.B. Tanner, Z. Chen, A.G. Rinzler, Phys. Rev. B 74, 045431 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    R. Matsunaga, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 106, 037404 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 3591 (2008)

    Article  Google Scholar 

  25. 25.

    S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba, Phys. Rev. B 60, 13339 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Phys. Chem. Chem. Phys. 5, 178 (2003)

    Article  Google Scholar 

  27. 27.

    V. Skákalová, A.B. Kaiser, Y.S. Woo, S. Roth, Phys. Rev. B 74, 085403 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    A. Znidarsic, A. Kaskela, P. Laiho, M. Gaberscek, Y. Ohno, A.G. Nasibulin, E.I. Kauppinen, A. Hassanien, J. Phys. Chem. C 117, 13324 (2013)

    Article  Google Scholar 

  29. 29.

    H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007)

    Article  Google Scholar 

  30. 30.

    Á. Pekker, K. Kamarás, J. Appl. Phys. 108, 054318 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    V.K. Jain, A.P. Kulshreshtha, Sol. Energy Mater. 4, 151 (1981)

    ADS  Article  Google Scholar 

  32. 32.

    R.G. Gordon, MRS Bull. 25, 52 (2000)

    Article  Google Scholar 

  33. 33.

    T.M. Barnes, M.O. Reese, J.D. Bergeson, B.A. Larsen, J.L. Blackburn, M.C. Beard, J. Bult, J. van de Lagemaat, Adv. Energy Mater. 2, 353 (2012)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Katalin Kamarás.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tóháti, H.M., Pekker, Á., Pataki, B.Á. et al. Bundle versus network conductivity of carbon nanotubes separated by type. Eur. Phys. J. B 87, 126 (2014). https://doi.org/10.1140/epjb/e2014-41103-9

Download citation


  • Mesoscopic and Nanoscale Systems