Bundle versus network conductivity of carbon nanotubes separated by type

  • Hajnalka M. Tóháti
  • Áron Pekker
  • Bálint Á. Pataki
  • Zsolt Szekrényes
  • Katalin Kamarás
Regular Article

Abstract

We report wide-range optical investigations on transparent conducting networks made from separated (semiconducting, metallic) and reference (mixed) single-walled carbon nanotubes, complemented by transport measurements. Comparing the intrinsic frequency-dependent conductivity of the nanotubes with that of the networks, we conclude that higher intrinsic conductivity results in better transport properties, indicating that the properties of the nanotubes are at least as much important as the contacts. We find that HNO3 doping offers a larger improvement in transparent conductive quality than separation. Spontaneous dedoping occurs in all samples but is most effective in films made of doped metallic tubes, where the sheet conductance returns close to its original value within 24 h.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    G. Gruner, J. Mater. Chem. 16, 3533 (2006)CrossRefGoogle Scholar
  2. 2.
    D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011)CrossRefGoogle Scholar
  3. 3.
    A.A. Green, M.C. Hersam, Nano Lett. 8, 1417 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    F. Lu, M.J. Meziani, L. Cao, Y.P. Sun, Langmuir 27, 4339 (2011)CrossRefGoogle Scholar
  5. 5.
    J.L. Blackburn, T.M. Barnes, M.C. Beard, Y.H. Kim, R.C. Tenent, T.J. McDonald, B. To, J. Coutts, M.J. Heben, ACS Nano 2, 1266 (2008)CrossRefGoogle Scholar
  6. 6.
    T.M. Barnes, J.L. Blackburn, J. van de Lagemaat, T.J. Coutts, M.J. Heben, ACS Nano 2, 1968 (2008)CrossRefGoogle Scholar
  7. 7.
    M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Science 288, 494 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Garrett, I.N. Ivanov, R.A. Gerhardt, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. 97, 163105 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K. Kamarás, Á. Pekker, B. Botka, H. Hu, S. Niyogi, M.E. Itkis, R.C. Haddon, Phys. Stat. Sol. B 247, 2754 (2010)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Á. Pekker, K. Kamarás, Phys. Rev. B 84, 075475 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W. Zhou, J. Vavro, N.M. Nemes, J.E. Fischer, F. Borondics, K. Kamarás, D.B. Tanner, Phys. Rev. B 71, 205423 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    F. Keilmann, R. Hillenbrand, in Nano-Optics and near-field optical microscopy, edited by D. Richards, A. Zayats (Artech House, Boston, London, 2009), p. 235Google Scholar
  16. 16.
    N. Ocelic, A. Huber, R. Hillenbrand, Appl. Phys. Lett. 89, 101124 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    S. Amarie, P. Zaslansky, Y. Kajihara, E. Griesshaber, W. Schmahl, F. Keilmann, Beilstein J. Nanotechnol. 3, 312 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Cvitkovic, N. Ocelic, R. Hillenbrand, Nano Lett. 7, 3177 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    J. van der Pauw, Philips Res. Rep. 13, 1 (1958)Google Scholar
  21. 21.
    E. Bekyarova, M.E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, R.C. Haddon, J. Am. Chem. Soc. 127, 5990 (2005)CrossRefGoogle Scholar
  22. 22.
    F. Borondics, K. Kamarás, M. Nikolou, D.B. Tanner, Z. Chen, A.G. Rinzler, Phys. Rev. B 74, 045431 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    R. Matsunaga, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 106, 037404 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 3591 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba, Phys. Rev. B 60, 13339 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Phys. Chem. Chem. Phys. 5, 178 (2003)CrossRefGoogle Scholar
  27. 27.
    V. Skákalová, A.B. Kaiser, Y.S. Woo, S. Roth, Phys. Rev. B 74, 085403 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    A. Znidarsic, A. Kaskela, P. Laiho, M. Gaberscek, Y. Ohno, A.G. Nasibulin, E.I. Kauppinen, A. Hassanien, J. Phys. Chem. C 117, 13324 (2013)CrossRefGoogle Scholar
  29. 29.
    H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007)CrossRefGoogle Scholar
  30. 30.
    Á. Pekker, K. Kamarás, J. Appl. Phys. 108, 054318 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    V.K. Jain, A.P. Kulshreshtha, Sol. Energy Mater. 4, 151 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    R.G. Gordon, MRS Bull. 25, 52 (2000)CrossRefGoogle Scholar
  33. 33.
    T.M. Barnes, M.O. Reese, J.D. Bergeson, B.A. Larsen, J.L. Blackburn, M.C. Beard, J. Bult, J. van de Lagemaat, Adv. Energy Mater. 2, 353 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hajnalka M. Tóháti
    • 1
  • Áron Pekker
    • 1
  • Bálint Á. Pataki
    • 1
  • Zsolt Szekrényes
    • 1
  • Katalin Kamarás
    • 1
  1. 1.Institute for Solid State Physics and Optics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations