Skip to main content
Log in

Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We reveal that two-dimensional semiconductors with Rashba spin-orbit interaction (R2DG) exhibit exceptionally strong nonlinear optical response (NOR) in the terahertz frequency regime. The spin-split of the parabolic energy band in R2DG allows strong multiple-photon process to occur via inter-subband mechanism. We show sharp multiple photon edges in the nonlinear conductivity. The edges correspond to the cut-off effect produced by the multiple-photon process. For Rashba coupling parameter of λ R ≈ 10−10 eV m, electric field strength in the order of only 102 V/cm is required for the NOR to dominate over the linear response. Furthermore, the roles of the parabolic ‘free electron’ term H 0 and the linear Rashba term H R on NOR of R2DG are also investigated. Although the NOR is made possible due to the presence of a finite H R , H 0 does play an important role on the NOR especially in high temperature regime. H 0 has rendered R2DG a strong optical nonlinearity at elevated temperature which is not found in a purely linear system such as graphene. The results suggest the possibilities of Rashba spintronic system in the application of nonlinear terahertz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnr, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  3. X.F. Wang, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 65, 165217 (2002)

    Article  ADS  Google Scholar 

  4. T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett. 88, 126601 (2002)

    Article  ADS  Google Scholar 

  5. M. Khodas, A. Shekhter, A.M. Finkel’stein, Phys. Rev. Lett. 92, 086602 (2004)

    Article  ADS  Google Scholar 

  6. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  MATH  Google Scholar 

  7. Y.A. Bychkov, E.I. Rashba, J. Exp. Theor. Phys. Lett. 39, 78 (1984)

    Google Scholar 

  8. A.R. Wright, X.G. Xu, J.C. Cao, C. Zhang, Appl. Phys. Lett. 95, 072101 (2009)

    Article  ADS  Google Scholar 

  9. S.A. Mikhailov, K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008)

    ADS  Google Scholar 

  10. E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, Phys. Rev. Lett. 105, 097401 (2010)

    Article  ADS  Google Scholar 

  11. G.-K. Lim et al., Nat. Photon. 5, 554 (2011)

    Article  ADS  Google Scholar 

  12. S. Shareef, Y.S. Ang, C. Zhang, J. Opt. Soc. Am. B 29, 274 (2012)

    Article  ADS  Google Scholar 

  13. Y.S. Ang, S. Sultan, C. Zhang, Appl. Phys. Lett. 97, 243110 (2010)

    Article  ADS  Google Scholar 

  14. K.S. Novoselov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  15. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  16. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  17. F. Gao, G. Wang, C. Zhang, Nanotech. 19, 465401 (2008)

    Article  ADS  Google Scholar 

  18. D. Yuan, W. Xu, Z. Zeng, F. Lu, Phys. Rev. B 72, 033320 (2005)

    Article  ADS  Google Scholar 

  19. J.A. Maytorena, C. López-Bastidas, F. Mireles, Phys. Rev. B 74, 235313 (2006)

    Article  ADS  Google Scholar 

  20. J. Nitta, T. Akazaki, H. Takayanagi, Phys. Rev. Lett. 78, 1335 (1997)

    Article  ADS  Google Scholar 

  21. D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

    Article  ADS  Google Scholar 

  22. C.R. Ast et al., Phys. Rev. Lett. 98, 186807 (2007)

    Article  ADS  Google Scholar 

  23. K. Ishizaka et al., Nat. Mater. 10, 521 (2011)

    Article  ADS  Google Scholar 

  24. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  25. Y. Zhou, M.W. Wu, Phys. Rev. B 83, 245436 (2011)

    Article  ADS  Google Scholar 

  26. K. Drese, M. Holthaus, Eur. Phys. J. D 5, 119 (1999)

    Article  ADS  Google Scholar 

  27. S. LaShell, B.A. McDougall, E. Jensen, Phys. Rev. Lett. 77, 3419 (1996)

    Article  ADS  Google Scholar 

  28. K. Yaji et al., Nat. Commun. 1, 17 (2010)

    Article  ADS  Google Scholar 

  29. M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006)

    Article  ADS  Google Scholar 

  30. E. McCann, D.S.L. Abergel, V.I. Fal’ko, Solid State Commun. 143, 110 (2007)

    Article  ADS  Google Scholar 

  31. A. Varykhalov et al., Phys. Rev. Lett. 108, 066804 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ang, Y.S., Cao, J.C. & Zhang, C. Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime. Eur. Phys. J. B 87, 28 (2014). https://doi.org/10.1140/epjb/e2014-41015-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-41015-8

Keywords

Navigation