Advertisement

Ornstein-Zernike correlations and magnetic ordering in nanostructures

  • Ever Alberto Velásquez
  • Johan Mazo-ZuluagaEmail author
  • Dora Altbir
  • José Mejía-López
Regular Article

Abstract

In this paper we propose a Heisenberg variational approach to study pseudo-critical phenomena on ferromagnetic nanostructures. We combine a two-spin cluster 3-dimensional Heisenberg Hamiltonian with Orstein-Zernike correlations and consider several geometries and crystalline lattices to explore the relationship among these factors and the effective number of nearest neighbors defined in several kind of nanometric structures. With this method we examine the size at which the pseudo-critical temperature of a magnetic nanoparticle reaches its bulk value. Our results shed light on the nanoscopic-microscopic limit, evidencing in particular that when one dimension is very small, independently of how big the other dimensions become, it is not possible for the structure to reach the bulk-like behavior. The results of our model are in good agreement with experimental data and other available analytical models.

Keywords

Solid State and Materials 

References

  1. 1.
    C.V. Salata, J. Nanobiotechnology 2, 3 (2004)CrossRefGoogle Scholar
  2. 2.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nature Nanotechnology 7, 699 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Imran, A.M. Revol-Junelles, A. Martyn, E.A. Tehrany, M. Jacquot, M. Linder, S. Desobry, Critical Reviews Food Science Nutrition 50, 799 (2010)CrossRefGoogle Scholar
  4. 4.
    F. Sun, K.A. Osseo-Asare, Y. Chen, B.A. Dempsey, J. Hazardous Mater. 196, 311 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003)ADSGoogle Scholar
  6. 6.
    E.L. Lee, P.E. Bolduc, C.E. Violet, Phys. Rev. Lett. 13, 800 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, J. Appl. Phys. 73, 6760 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    T. Ambrose, C.L. Chien, Phys. Rev. Lett. 76, 1743 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Y.T. Chen, S.M. Xie, J. Nanomaterials 2012, 486284 (2012)Google Scholar
  10. 10.
    D. Tobia, E. Winkler, R.D. Zysler, M. Granada, H.E. Troiani, Phys. Rev. B 78, 104412 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    E.G. Moshopoulou, O. Isnard, M. Milanovic, V.V. Srdic, Probing the Transition from Nano-to Bulk-Like Behaviour in ZnFe2O4 Nanoparticles, in Materials Science Forum (Trans Tech Publ, 2011), Vol. 674, pp. 207–211Google Scholar
  12. 12.
    X. Batlle, et al., J. Appl. Phys. 109, 07B524 (2011)CrossRefGoogle Scholar
  13. 13.
    D.H. Han, J.P. Wang, H.L. Luo, J. Magn. Magn. Mater. 136, 176 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    L. Sun, P.C. Searson, C.L. Chien, Phys. Rev. B 61, R6463 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    L. Sun, C.L. Chien, P.C. Searson, J. Mater. Sci. 35, 1097 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J. Meier, B. Doudin, J.P. Ansermet, J. Appl. Phys. 79, 6010 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    M.G. Krishna, A.K. Kapoor, M.D. Prasad, V. Srinivasan, Physica E 33, 359 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M.G. Krishna, A.K. Kapoor, M.D. Prasad, V. Srinivasan, Physica E 42, 1920 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D.S. Bertoldi, E.M. Bringa, E.N. Miranda, J. Phys.: Condens. Matter 24, 226004 (2012)ADSGoogle Scholar
  20. 20.
    E.A. Velásquez, J. Mazo-Zuluaga, J. Restrepo, Ò. Iglesias, Phys. Rev. B 83, 184432 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    L.G. Ferreira, S.R. Salinas, M.J. Oliveira, Phys. Stat. Sol. B 83, 229 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Faleiro Ferreira, N.P. Silva, J. Phys. A 20, 6429 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Faleiro Ferreira, Phys. Stat. Sol. B 148, 709 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    D. Peña Lara, G.A. Pérez Alcázar, L.E. Zamora, J.A. Plascak, Phys. Rev. B 80, 014427 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. Restrepo, G.A. Pérez Alcázar, Phys. Rev. B 61, 5880 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    A. Osorio, W.R. Aguirre Contreras, L.E. Zamora, G.A. Pérez Alcazar, J.A. Plascak, Phys. Rev. B 68, 024420 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Smart, Effective field theories of magnetism, 1st edn. (Saunders Co., Philadelphia, 1966)Google Scholar
  28. 28.
    J.M. Yeomans, Statistical mechanics of phase transitions, 1st edn. (Oxford Science Publications, New York, 1992)Google Scholar
  29. 29.
    R. Skomski, Simple models of magnetism, 1st edn. (Oxford Graduate Texts, New York, 2008)Google Scholar
  30. 30.
    H.E. Stanley, Introduction to phase transitions and critical phenomena, 1st edn. (Oxford University press, New York, 1971)Google Scholar
  31. 31.
    R. Skomski, D.J. Sellmyer, J. Appl. Phys. 87, 4756 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Z.Q. Qiu, J. Pearson, S.D. Bader, Phys. Rev. Lett. 70, 1006 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    V. Nikolaev, A. Shipilin, Phys. Solid State 45, 1079 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    X.Y. Lang, W.T. Zheng, Q. Jiang, Phys. Rev. B 73, 224444 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    D.R. Ritchie, M.E. Fisher, Phys. Rev. B 7, 480 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, J. Appl. Phys. 73, 6760 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ever Alberto Velásquez
    • 1
    • 2
  • Johan Mazo-Zuluaga
    • 1
    Email author
  • Dora Altbir
    • 3
  • José Mejía-López
    • 4
  1. 1.GES and GICM Groups, Instituto de Física-FCENUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo de Investigación en Modelamiento y Simulación Computacional, Facultad de IngenieríasUniversidad de San Buenaventura Sec. MedellínMedellínColombia
  3. 3.Departamento de FísicaUniversidad de Santiago de Chile (USACH); CEDENNASantiagoChile
  4. 4.Facultad de FísicaPontificia Universidad Católica de Chile; CEDENNASantiagoChile

Personalised recommendations