Quantitative comparison between crowd models for evacuation planning and evaluation


Crowd simulation is rapidly becoming a standard tool for evacuation planning and evaluation. However, the many crowd models in the literature are structurally different, and few have been rigorously calibrated against real-world egress data, especially in emergency situations. In this paper we describe a procedure to quantitatively compare different crowd models or between models and real-world data. We simulated three models: (1) the lattice gas model, (2) the social force model, and (3) the RVO2 model, and obtained the distributions of six observables: (1) evacuation time, (2) zoned evacuation time, (3) passage density, (4) total distance traveled, (5) inconvenience, and (6) flow rate. We then used the DISTATIS procedure to compute the compromise matrix of statistical distances between the three models. Projecting the three models onto the first two principal components of the compromise matrix, we find the lattice gas and RVO2 models are similar in terms of the evacuation time, passage density, and flow rates, whereas the social force and RVO2 models are similar in terms of the total distance traveled. Most importantly, we find that the zoned evacuation times of the three models to be very different from each other. Thus we propose to use this variable, if it can be measured, as the key test between different models, and also between models and the real world. Finally, we compared the model flow rates against the flow rate of an emergency evacuation during the May 2008 Sichuan earthquake, and found the social force model agrees best with this real data.

This is a preview of subscription content, access via your institution.


  1. 1.

    G.K. Still, Ph.D. thesis, University of Warwick, 2000

  2. 2.

    S. Zhou, D. Chen, W. Cai, L. Luo, M.Y.H. Low, F. Tian, V.S.H. Tay, D.W.S. Ong, B.D. Hamilton, ACM Trans. Mod. Comput. Simul. 20, 20 (2010)

    Google Scholar 

  3. 3.

    S. Gwynne, E. Galea, M. Owen, P. Lawrence, L. Filippidis, Building and Environment 34, 741 (1999)

    Article  Google Scholar 

  4. 4.

    S. Regelous, K. Mannion, Massive Software – Simulating Life (2011)

  5. 5.

    C.W. Reynolds, Comput. Graph. 21, 25 (1987)

    Article  Google Scholar 

  6. 6.

    J. Snape, Reciprocal collision avoidance and navigation for video games, in Game Developers Conf., San Francisco, 2012

  7. 7.

    R.E. Ensemble Studios, Big Huge Games, Age of empires (2013), http://ageofempiresonline.com/en/

  8. 8.

    D. Helbing, P. Molnár, Phys. Rev. E 51, 4282 (1995)

    ADS  Article  Google Scholar 

  9. 9.

    V. Viswanathan, M. Lees, in Transactions on Computational Science, edited by M.L. Gavrilova, K.C. Tan, C.V. Phan (Springer, 2012), pp. 1–20

  10. 10.

    S.J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, D. Manocha, in Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aire-la-Ville, 2010, SCA ’10, pp. 119–128, http://dl.acm.org/citation.cfm?id=1921427.1921446

  11. 11.

    H. Klüpfel, M. Schreckenberg, T. Meyer-König, in Traffic and Granular Flow ’03, edited by S. Hoogendoorn, S. Luding, P. Bovy, M. Schreckenberg, D. Wolf (Springer, Berlin, Heidelberg, 2005), pp. 357–372

  12. 12.

    J.D.A. Richard D. Peacock, E.D. Kuligowski, Pedestrian And Evacuation Dynamics (Springer, 2011)

  13. 13.

    A. Mordvintsev, V. Krzhizhanovskaya, M. Lees, P.M.A. Sloot, Pedestrian and Evacuation Dynamics, 2012 (in press). Available at http://www.science.uva.nl/research/pscs/papers/archive/Mordvintsev2012a .pdf

  14. 14.

    L. Henderson, Transportation Res. 8, 509 (1974)

    Article  Google Scholar 

  15. 15.

    J.M. Watts Jr., Fire Safety Journal 12, 237 (1987)

    ADS  Article  MathSciNet  Google Scholar 

  16. 16.

    S. Paris, J. Pettré, S. Donikian, Computer Graphics Forum 26, 665 (2007)

    Article  Google Scholar 

  17. 17.

    A Pattern-based Modeling Framework for Simulating Human-like Pedestrian Steering Behaviors, edited by S.Z. Nan Hu, Michael Lees (ACM, 2013) (to appear)

  18. 18.

    A. Johansson, D. Helbing, H.Z. Al-abideen, S. Al-bosta, Adv. Compl. Syst. 11, 497 (2008)

    Article  MATH  Google Scholar 

  19. 19.

    S. Okazaki, S. Matsushita, Engineering for Crowd Safety (Elsevier, Amsterdam, 1993)

  20. 20.

    J. Ondřej, J. Pettré, A.H. Olivier, S. Donikien, ACM Transactions on Graphics (TOG) 29, 123 (2010)

    Google Scholar 

  21. 21.

    J. van den Berg, S.J. Guy, M.C. Lin, D. Manocha, in Robotics Research: The 14th International Symposium ISRR (Springer, 2011), Vol. 70

  22. 22.

    S.J. Guy, J. van den Berg, M.C. Lin, in Symposium on Computer Graphics, University of North Carolina, Proceedings of the 2010 annual symposium on Computational geometry, Utah, 2010, pp. 115–116

  23. 23.

    J. van den Berg, M.C. Lin, D. Manocha, Reciprocal Velocity Obstacles for real-time multi-agent navigation, in IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1928–1935

  24. 24.

    R. Hughes, Ann. Rev. Fluid Mech. 35, 169 (2003)

    ADS  Google Scholar 

  25. 25.

    D. Helbing, P. Mukerji, Europhys. J. Data Sci. 1, 1 (2012)

    Google Scholar 

  26. 26.

    Simulating Complex Systems by Cellular Automata, edited by A.G. Hoekstra, J. Kroc, P.M.A. Sloot, Understanding Complex Systems (Springer, 2010)

  27. 27.

    S. Marconi, Ph.D. thesis, Université de Genève, 2002

  28. 28.

    S. Marconi, B. Chopard, in Cellular Automata, edited by S. Bandini, B. Chopard, M. Tomassini (Springer, Berlin, Heidelberg, 2002), Vol. 2493 of Lecture Notes in Computer Science, pp. 231–238

  29. 29.

    R. Nagai, T. Nagatani, M. Isobe, T. Adachi, Physica A 343, 712 (2004)

    ADS  Google Scholar 

  30. 30.

    K. Nishinari, A. Kirchner, A. Namazi, A. Schadschneider, IEICE Trans. Inform. Sys. 87, 726 (2004)

    Google Scholar 

  31. 31.

    C.M. Henein, T. White, Crowds and Cellular Automata, Vol. 4173 of Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2006)

  32. 32.

    Y. Tajima, T. Nagatani, Physica A 292, 545 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  33. 33.

    M. Isobe, T. Adachi, T. Nagatani, Physica A 336, 638 (2004)

    ADS  Google Scholar 

  34. 34.

    A. Kamphuis, M.H. Overmars, in Proceedings of the 2004 ACM SIGGRAPH Symposium on Computer Animation, Utrecht University, 2004

  35. 35.

    H. Xi, S. Lee, Y.J. Son, An Integrated Pedestrian Behavior Model Based on Extended Decision Field Theory and Social Force Model, in 2010 Winter Simulation Conference, 2010, pp. 824–836

  36. 36.

    G. Peng, X. Ruihua, Pedestrian and Evacuation Dynamics 2008 (Springer, 2010), pp. 585–595

  37. 37.

    D. Helbing, I. Farkas, T. Vicsek, ArXiv:0009448V1 [cond-mat.stat-mech] (2002)

  38. 38.

    P. Fiorini, Z. Shiller, in Proceedings. IEEE International Conference on Robotics and Automation, 1993, pp. 560–565

  39. 39.

    J. van den Berg, S. Patil, J. Sewall, D. Manocha, M.C. Lin, in 2008 symposium on Interactive 3D graphics and games, University of North Carolina, 2008

  40. 40.

    S.J. Guy, J. Chhugani, C. Kim, N. Satish, M.C. Lin, D. Manocha, P. Dubey, in SCA ’09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM Request Permissions, 2009

  41. 41.

    S.J. Guy, M.C. Lin, D. Manocha, in 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, 2010, pp. 575–582

  42. 42.

    S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, Simul. Trans. Soc. Mod. Simul. Int. 82, 517 (2005)

    Google Scholar 

  43. 43.

    X. Pan, Ph.D. thesis, Stanford University, 2006

  44. 44.

    J. Fruin, Public Transportation in the United States (Englewoods Cliffs, Prentice Hall, 1992)

  45. 45.

    D. Bauer, in Pedestrian and Evacuation Dynamics, edited by R.D. Peacock, E.D. Kuligowski, J.D. Averill (Springer, US, 2011), pp. 547–556

  46. 46.

    A. Seyfried, A. Schadschneider, in Cellular Automata, edited by H. Umeo, S. Morishita, K. Nishinari, T. Komatsuzaki, S. Bandini (Springer, Berlin, Heidelberg, 2008), Vol. 5191 of Lecture Notes in Computer Science, pp. 563–566

  47. 47.

    J. Lin, IEEE Trans. Inform. Theor. 37, 145 (1991)

    MATH  Google Scholar 

  48. 48.

    H. Abdi, D. Valentin, U.D. Bourgogne, B. Edelman, in Proceedings of the IEEE Computer Society: International Conference on Computer Vision and Pattern Recognition, 2005, pp. 42–47

  49. 49.

    X. Yang, Z. Wu, Natural Hazards 65, 1765 (2013)

    Google Scholar 

  50. 50.

    X. Yang, Z. Wu, Y. Li, Physica A 390, 2375 (2011)

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vaisagh Viswanathan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viswanathan, V., Lee, C.E., Lees, M.H. et al. Quantitative comparison between crowd models for evacuation planning and evaluation. Eur. Phys. J. B 87, 27 (2014). https://doi.org/10.1140/epjb/e2014-40699-x

Download citation


  • Statistical and Nonlinear Physics