Skip to main content
Log in

Robustness in clustering-based weighted inter-connected networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the robustness of symmetrically coupled and clustering-based weighted heterogeneous inter-connected networks with respect to load-failure-induced cascades. This is done under the assumption that the flow dynamics are governed by global redistribution of loads based on weighted betweenness centrality. Our results indicate that no weighting bias should be assigned to inter-links when calculating shortest path between node pairs under the clustering-based weighting scheme; i.e., inter-links shall be treated no differently than intra-links. In contrast with local load redistribution cases, we show that increasing connectivity is preferred for the robustness against global load redistribution-based cascading failures in clustering-based weighted inter-connected networks. Furthermore, comparisons among weighting schemes reveal that, both the clustering-based and degree-based schemes outperform the random one in the sense of requiring lower initial and total investments required to ensure robustness. We also find that clustering-based scheme outperforms degree-based one in terms of requiring lower initial investments. Except in a limited range where weighting is heavily suppressed, clustering-based scheme is shown to outperform degree-based one in terms of total investments. Finally, when there exists a hard investment budget constraint, clustering-based weighting scheme would be a better choice against a two-nodes-induced failure than the degree-based weighting, and the clustering-based scheme is more stable than degree-based scheme against one-or-two-nodes-induced failure. We expect our findings to be significantly useful in designing real-world weighted inter-connected networks that are robust against load-failure-induced cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Barrett, R. Beckman, K. Channakeshava, F. Huang, V.S.A. Kumar, A. Marathe, M.V. Marathe, G. Pei, in 5th International Conference on Critical Infrastructure (IEEE, 2010), p. 1

  2. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  3. R. Parshani, S.V. Buldyrev, S. Havlin, Phys. Rev. Lett. 105, 48701 (2010)

    Article  ADS  Google Scholar 

  4. J. Gao, S.V. Buldyrev, H.E. Stanley, S. Havlin, Nat. Phys. 8, 40 (2011)

    Article  Google Scholar 

  5. R. Parshani, S.V. Buldyrev, S. Havlin, Proc. Natl. Acad. Sci. USA 108, 1007 (2011)

    Article  ADS  Google Scholar 

  6. X. Huang, J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 83, 065101 (2011)

    Article  ADS  Google Scholar 

  7. K. Morino, G. Tanaka, K. Aihara, Phys. Rev. E 83, 056208 (2011)

    Article  ADS  Google Scholar 

  8. A. Bashan, S. Havlin, J. Stat. Phys. 145, 686 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. A. Bashan, R. Parshani, S. Havlin, Phys. Rev. E 83, 051127 (2011)

    Article  ADS  Google Scholar 

  10. S.V. Buldyrev, N.W. Shere, G.A. Cwilich, Phys. Rev. E 83, 016112 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman, Chaos 17, 026103 (2007)

    Article  ADS  Google Scholar 

  12. M.J.O. Pocock, D.M. Evans, J. Memmott, Science 335, 973 (2012)

    Article  ADS  Google Scholar 

  13. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, A.Y. Zyuzin, Phys. Rev. E 78, 056106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.P. Gleeson, Phys. Rev. E 77, 046117 (2008)

    Article  ADS  Google Scholar 

  15. M.E.J. Newman, Phys. Rev. Lett. 103, 58701 (2009)

    Article  ADS  Google Scholar 

  16. J.C. Miller, Phys. Rev. E 80, 020901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Allard, P.-A. Noël, L.J. Dubé, B. Pourbohloul, Phys. Rev. E 79, 036113 (2009)

    Article  ADS  Google Scholar 

  18. M. Ostilli, J.F.F. Mendes, Phys. Rev. E 80, 011142 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Yağan, D. Qian, J. Zhang, D. Cochran, IEEE Trans. Parallel Distrib. Syst. 23, 1708 (2012)

    Article  Google Scholar 

  20. R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  21. J. Shao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. E 83, 036116 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Mirzasoleiman, M. Babaei, M. Jalili, M. Safari, Phys. Rev. E 84, 046114 (2011)

    Article  ADS  Google Scholar 

  23. A. Gutfraind, in Handbook of Optimization in Complex Networks: Theory and Applications, edited by My T. Thai, P.M. Pardalos (Springer, 2012), p. 37

  24. W. Wang, G. Chen, Phys. Rev. E 77, 026101 (2008)

    Article  ADS  Google Scholar 

  25. M. Schäfer, J. Scholz, M. Greiner, Phys. Rev. Lett. 96, 108701 (2006)

    Article  ADS  Google Scholar 

  26. A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102(R) (2002)

    Article  ADS  Google Scholar 

  27. K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  28. E.J. Lee, K.I. Goh, B. Kahng, D. Kim, Phys. Rev. E 71, 056108 (2005)

    Article  ADS  Google Scholar 

  29. J.H. Kim, K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2003)

    Google Scholar 

  30. C.D. Brummitt, R.M. D’Souza, E.A. Leicht, arXiv:1010.0279 (2010)

  31. C.D. Brummitt, R.M. D’Souza, E.A. Leicht, Proc. Natl. Acad. Sci. USA 109, E680 (2012)

    Article  ADS  Google Scholar 

  32. Y. Qiu, Physica A 392, 1920 (2013)

    Article  ADS  Google Scholar 

  33. S. Pajevic, D. Pilenz, Nat. Phys. 8, 429 (2011)

    Article  Google Scholar 

  34. K. Romer, F. Mattern, IEEE Wireless Commun. 11, 54 (2004)

    Article  Google Scholar 

  35. L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  36. M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  37. Y. Qiu, S. Chen, J. Stat. Mech. 2010, P12012 (2010)

    Article  Google Scholar 

  38. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Qiu, J. Non-Newtonian Fluid 197, 1 (2013)

    Article  Google Scholar 

  40. R. Yang, W. Wang, Y. Lai, G. Chen, Phys. Rev. E 79, 026112 (2009)

    Article  ADS  Google Scholar 

  41. O. Yağan, D. Qian, J. Zhang, D. Cochran, IEEE J. Selected Areas Commun. 31, 1038 (2013)

    Article  Google Scholar 

  42. Y. Qiu, Eur. Phys. J. B 86, 329 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhuo Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Yağan, O. Robustness in clustering-based weighted inter-connected networks. Eur. Phys. J. B 87, 89 (2014). https://doi.org/10.1140/epjb/e2014-40466-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40466-1

Keywords

Navigation