Periodic frequencies of the cycles in 2 × 2 games: evidence from experimental economics

Abstract

Evolutionary dynamics provides an iconic relationship – the periodic frequency of a game is determined by the payoff matrix of the game. This paper reports the first experimental evidence to demonstrate this relationship. Evidence comes from two populations randomly-matched 2 × 2 games with 12 different payoff matrix parameters. The directions, frequencies and changes in the radius of the cycles are measured definitively. The main finding is that the observed periodic frequencies of the persistent cycles are significantly different in games with different parameters. Two replicator dynamics, standard and adjusted, are employed as predictors for the periodic frequency. Interestingly, both of the models could infer the difference of the observed frequencies well. The experimental frequencies linearly, positively and significantly relate to the theoretical frequencies, but the adjusted model performs slightly better.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)

  2. 2.

    J. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)

  3. 3.

    B. Andrae et al., Phys. Rev. Lett. 104, 218102 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    R. Myerson, Game Theory: Analysis of Conflict (Harvard University Press, Cambridge, 1997)

  5. 5.

    R. Dawkins, The Selfish Gene (Oxford University Press, Oxford, 1976)

  6. 6.

    P. Schuster, K. Sigmund, Animal Behaviour 29, 186 (1981)

    Article  Google Scholar 

  7. 7.

    J. Cremer, T. Reichenbach, E. Frey, Eur. Phys. J. B 63, 373 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    J.C. Claussen, Eur. Phys. J. B 60, 391 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    P. Taylor, L. Jonker, Mathematical Biosciences 40, 145 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    J. Weibull, Evolutionary Game Theory (The MIT press, Cambridge, 1997)

  11. 11.

    J. Hofbauer, K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    W. Sandholm, Population Games And Evolutionary Dynamics (MIT press, Cambridge, 2011)

  13. 13.

    A. Falk, J. Heckman, Science 326, 535 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    L. Samuelson, J. Econ. Perspectives 16, 47 (2002)

    Article  Google Scholar 

  15. 15.

    K. Binmore, J. Swierzbinski, C. Proulx, Econ. J. 111, 445 (2001)

    Article  Google Scholar 

  16. 16.

    D. Friedman, Econ. J. 106, 1 (1996)

    Article  Google Scholar 

  17. 17.

    C. Anderson et al., J. Econ. Theory 115, 209 (2004)

    Article  MATH  Google Scholar 

  18. 18.

    T.N. Cason, D. Friedman, E. Hopkins, Rev. Econ. Stud. 81, 112 (2014)

    Article  Google Scholar 

  19. 19.

    B. Xu, H.-J. Zhou, Z. Wang, Physica A 392, 4997 (2013)

    ADS  Article  MathSciNet  Google Scholar 

  20. 20.

    R. Selten, T. Chmura, Am. Econ. Rev. 98, 938 (2008)

    Article  Google Scholar 

  21. 21.

    A. Traulsen, J. Claussen, C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    M. Hoffman, S. Suetens, M. Nowak, U. Gneezy, unpublished (2012)

  23. 23.

    T. Borgers, R. Sarin, J. Econ. Theory 77, 1 (1997)

    Article  MathSciNet  Google Scholar 

  24. 24.

    Y. Cheung, D. Friedman, J. Econ. Behav. Organ. 35, 263 (1998)

    Article  Google Scholar 

  25. 25.

    B. Xu, Z. Wang, in Unifying Themes in Complex Systems, edited by H. Sayama et al. (NECSI Knowledge Press, 2011), Vol. VIII, p. 1313

  26. 26.

    H.P. Young, Stochastic Adaptive Dynamics (Palgrave Macmillan, Basingstoke, 2008)

  27. 27.

    S. Dorosz, M. Pleimling, Phys. Rev. E 83, 031107 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    B. Xu, Z. Wang, SSRN eLibrary, Social Transition Spectrum in Constant Sum 2 × 2 Games with Human Subjects (2011), http://dx.doi.org/10.2139/ssrn.1910045

  29. 29.

    C. Castellano, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    ADS  Article  MathSciNet  Google Scholar 

  31. 31.

    C. Alós-Ferrer, Int. Game Theory Rev. 5, 263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    C. Camerer, R.S. Foundation, Behavioral Game Theory: Experiments in Strategic Interaction (Princeton University Press, Princeton, 2003), Vol. 9

  33. 33.

    I. Erev et al., J. Behav. Decis. Mak. 23, 15 (2010)

    Article  Google Scholar 

  34. 34.

    M. Benaīm, J. Hofbauer, E. Hopkins, J. Econ. Theory 144, 1694 (2009)

    Article  MATH  Google Scholar 

  35. 35.

    Z. Wang, B. Xu, arXiv:1203.2591 (2012)

  36. 36.

    K. Ritzberger, J. Weibull, Econometrica 63, 1371 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37.

    B. Xu, Z. Wang, Results Phys. 2, 127 (2012)

    ADS  Article  Google Scholar 

  38. 38.

    J. Hofbauer, J. Math. Biol. 34, 675 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    A. Traulsen, C. Hauert, Rev. Nonlinear Dyn. Complexity 2, 25 (2009)

    Google Scholar 

  40. 40.

    S. Bowles, Microeconomics: Behavior, Institutions, and Evolution (Princeton University Press, Princeton, 2004)

  41. 41.

    K. Sigmund, The Calculus of Selfishness (Princeton University Press, Princeton, 2010)

  42. 42.

    S. Holzner, Physics I for Dummies (Wiley Publishing Inc., Hoboken, 2011)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhijian Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, B., Wang, S. & Wang, Z. Periodic frequencies of the cycles in 2 × 2 games: evidence from experimental economics. Eur. Phys. J. B 87, 46 (2014). https://doi.org/10.1140/epjb/e2014-31074-2

Download citation

Keywords

  • Statistical and Nonlinear Physics