Skip to main content
Log in

Mesoscopic resistive switch: non-volatility, hysteresis and negative differential resistance

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show how a simple model nanoswitch can perform as a memory resistor. Its resistance is determined by electron tunneling through a nanoparticle diffusing around one or more potential minima located between the electrodes in the presence of Joule’s heat dissipation. In the case of a single potential minimum, we observe hysteresis of the resistance at finite applied currents and negative differential resistance. For two (or more) minima the switching mechanism is non-volatile, meaning that the memristor can switch to a resistive state of choice and stay there. Moreover, the noise spectra of the switch exhibit 1/f 2 → 1/f crossover, in agreement with recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Venema, Nature 479, 309 (2011)

    Article  ADS  Google Scholar 

  2. B. Dipert, M. Levy, Designing with Flash Memory (Annabooks, San Diego, 1993)

  3. J. Palmer, Science and technology reporter, BBC News (2011), http://www.bbc.co.uk/news/science-environment-13392857

  4. J. Borghetti et al., Nature 464, 873 (2010)

    Article  ADS  Google Scholar 

  5. M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, Nat. Mater. 12, 114 (2013)

    Article  ADS  Google Scholar 

  6. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  ADS  Google Scholar 

  7. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  8. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  9. J.J. Yang et al., Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  10. J.J. Yang, F. Miao, M.D. Pickett, D.A.A Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  11. S.E. Savel’ev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Nanotechnology 22, 254011 (2011)

    Article  ADS  Google Scholar 

  12. S.E. Savel’ev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Appl. Phys. A 102, 891 (2011)

    Article  ADS  Google Scholar 

  13. S.E. Savel’ev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Appl. Phys. Lett. 99, 053108 (2011)

    Article  ADS  Google Scholar 

  14. Wei Yi, S.E. Savel’ev, G. Medeiros-Ribeiro, J.J. Yang, A.M. Bratkovsky, R.S. Williams, to be published

  15. S. Savel’ev, F. Marchesoni, F. Nori, Phys. Rev. E 70, 061107 (2004)

    Article  ADS  Google Scholar 

  16. S. Savel’ev, F. Marchesoni, F. Nori, Phys. Rev. E 71, 011107 (2005)

    Article  ADS  Google Scholar 

  17. F. Miao, J.J. Yang, J.P. Strachan, D. Stewart, R.S. Williams, C.N. Lau, Appl. Phys. Lett. 95, 113503 (2009)

    Article  ADS  Google Scholar 

  18. R. Mustermann et al., Phys. Status Solidi 4, 16 (2009)

    Google Scholar 

  19. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 3573 (2010)

    Article  Google Scholar 

  20. D.-H. Kwon et al., Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  21. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)

    Article  Google Scholar 

  22. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  23. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  24. A.S. Alexandrov, A.M. Bratkovsky, B. Bridle, S.E. Savel’ev, D.B. Strukov, R.S. Williams, Appl. Phys. Lett. 99, 202104 (2011)

    Article  ADS  Google Scholar 

  25. S. Savel’ev, A.L. Rakhmanov, X. Hu, A. Kasumov, F. Nori, Phys. Rev. B 75, 165417 (2007)

    Article  ADS  Google Scholar 

  26. S. Savel’ev, X.D. Hu, F. Nori, New J. Phys. 8, 105 (2006)

    Article  ADS  Google Scholar 

  27. L.Y. Gorelik, A. Isacsson, M.V. Voinova, B. Kasemo, R.I. Shekhter, M. Jonson, Phys. Rev. Lett. 80, 4526 (1998)

    Article  ADS  Google Scholar 

  28. N.A. Zimbovskaya, M.R. Pederson, Phys. Rep. 509, 1 (2011)

    Article  ADS  Google Scholar 

  29. A.V. Moskalenko et al., Phys. Rev. B 79, 241403(R) (2009)

    Article  ADS  Google Scholar 

  30. R.I. Shekhter, L.Y. Gorelik, I.V. Krive, M.N. Kiselev, A.V. Parafilo, M. Jonson, Nanoelectromech. Systems 1, 1 (2013)

    Article  ADS  Google Scholar 

  31. A. Nocera, C.A. Perroni, V.M. Ramaglia, V. Cataudella, Phys. Rev. B 83, 115420 (2011)

    Article  ADS  Google Scholar 

  32. F. Pistolesi, S. Labarthe, Phys. Rev. B 76, 165317 (2007)

    Article  ADS  Google Scholar 

  33. A. Nocera, C.A. Perroni, V. Marigliano Ramaglia, V. Cataudella, Phys. Rev. B 86, 035420 (2012)

    Article  ADS  Google Scholar 

  34. F. Pistolesi, Ya.M. Blanter, I. Martin, Phys. Rev. B 78, 085127 (2008)

    Article  ADS  Google Scholar 

  35. R. Hussein, A. Metelmann, P. Zedler, T. Brandes, Phys. Rev. B 82, 165406 (2010)

    Article  ADS  Google Scholar 

  36. M. Büttiker, Phys. Rev. B 33, 3020 (1986)

    Article  ADS  Google Scholar 

  37. M. Büttiker, IBM J. Res. Dev. 32, 64 (1988)

    Google Scholar 

  38. K.-H. Ahn, H.C. Park, J. Wiersig, J. Hong, Phys. Rev. Lett. 97, 216804 (2006)

    Article  ADS  Google Scholar 

  39. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)

  40. C. Festa, L. Fronzoni, F. Marchesoni, P. Grigolini, Phys. Lett. A 102, 95 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Savel’ev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savel’ev, S., Marchesoni, F. & Bratkovsky, A. Mesoscopic resistive switch: non-volatility, hysteresis and negative differential resistance. Eur. Phys. J. B 86, 501 (2013). https://doi.org/10.1140/epjb/e2013-40966-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40966-4

Keywords

Navigation