Electronic structure and spectra of CuO

Abstract

We report the electronic structure of monoclinic CuO as obtained from first principles calculations utilizing density functional theory plus effective Coulomb interaction (DFT + U) method. In contrast to standard DFT calculations taking into account electronic correlations in DFT + U gave antiferromagnetic insulator with energy gap and magnetic moment values in good agreement with experimental data. The electronic states around the Fermi level are formed by partially filled Cu 3d x²−y² orbitals with significant admixture of O 2p states. Theoretical spectra are calculated using DFT + U electronic structure method and their comparison with experimental photoemission and optical spectra show very good agreement.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

    ADS  Article  Google Scholar 

  2. 2.

    F. Parmigiani, G. Samoggia, Europhys. Lett. 7, 543 (1988)

    ADS  Article  Google Scholar 

  3. 3.

    X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Phys. Rev. Lett. 85, 5170 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    J.G. Bednorz, K.A. Müller, Rev. Mod. Phys. 60, 585 (1988)

    ADS  Article  Google Scholar 

  5. 5.

    J. Bednorz, K. Müller, Z. Phys. B 64, 189 (1986)

    ADS  Article  Google Scholar 

  6. 6.

    L.F. Mattheiss, Phys. Rev. B 5, 290 (1972)

    ADS  Article  Google Scholar 

  7. 7.

    K. Terakura, T. Oguchi, A.R. Williams, J. Kübler, Phys. Rev. B 30, 4734 (1984)

    ADS  Article  Google Scholar 

  8. 8.

    W.A. Harrison, Phys. Rev. B 76, 054417 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    T. Shimizu, T. Matsumoto, A. Goto, T.V. Chandrasekhar Rao, K. Yoshimura, K. Kosuge, Phys. Rev. B 68, 224433 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    B.X. Yang, T.R. Thurston, J.M. Tranquada, G. Shirane, Phys. Rev. B 39, 4343 (1989)

    ADS  Article  Google Scholar 

  11. 11.

    J.B. Forsyth, P.J. Brown, B.M. Wanklyn, J. Phys. C 21, 2917 (1988)

    ADS  Article  Google Scholar 

  12. 12.

    V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    ADS  Google Scholar 

  13. 13.

    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    ADS  Article  Google Scholar 

  14. 14.

    P. Poizot, S. Laruelle, S. Grugeon, J.M. Taracon, Nature 407, 496 (2000)

    ADS  Article  Google Scholar 

  15. 15.

    S.C. Ray, Sol. Energy Mater. Sol. Cells 68, 307 (2001)

    Article  Google Scholar 

  16. 16.

    T. Ben-Moshe, I. Dror, B. Berkowitz, Appl. Catal. B 85, 207 (2009)

    Article  Google Scholar 

  17. 17.

    T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, Y. Takita, J. Mater. Chem. 8, 2037 (1998)

    Article  Google Scholar 

  18. 18.

    Y. Jiang, S. Decker, C. Mohs, K.J. Klabunde, J. Catal. 180, 24 (1998)

    Article  Google Scholar 

  19. 19.

    J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, M. Sánchez, Electrochim. Acta 49, 4589 (2004)

    Article  Google Scholar 

  20. 20.

    R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12, 2301 (2000)

    Article  Google Scholar 

  21. 21.

    K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61, 11093 (2000)

    ADS  Article  Google Scholar 

  22. 22.

    S. Rehman, A. Mumtaz, S.K. Hasanain, J. Nanopart. Res. 13, 2497 (2011)

    Article  Google Scholar 

  23. 23.

    T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A.P. Ramirez, Nat. Mater. 7, 291 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    G. Jin, K. Cao, G.-C. Guo, L. He, Phys. Rev. Lett. 108, 187205 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    A.A. Samokhvalov, N.N. Loshkareva, Y.P. Sukhorukov, V.A. Gruverman, B.A. Gizhveskiĭ, N.M. Chebotaev, J. Exp. Theor. Phys. Lett. 49, 523 (1989)

    Google Scholar 

  26. 26.

    ICSD, Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology (NIST) Release 2013/1 (NIST, 2013), Vol. 1

  27. 27.

    D. Tahir, S. Tougaard, J. Phys.: Condens. Matter 24, 175002 (2012)

    ADS  Google Scholar 

  28. 28.

    F. Marabelli, G.B. Parravicini, F. Salghetti-Drioli, Phys. Rev. B 52, 1433 (1995)

    ADS  Article  Google Scholar 

  29. 29.

    Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III, edited by O. Madelung, U. Rössler, M. Schulz, (Springer, 2006), Vols. 71a and 22a

  30. 30.

    M. Ain, A. Menelle, B.M. Wanklyn, E.F. Bertaut, J. Phys.: Condens. Matter 4, 5327 (1992)

    ADS  Google Scholar 

  31. 31.

    W.Y. Ching, Y.-N. Xu, K.W. Wong, Phys. Rev. B 40, 7684 (1989)

    ADS  Article  Google Scholar 

  32. 32.

    C. Kanagaraj, N. Baskaran, Adv. Mater. Res. 488, 129 (2012)

    Article  Google Scholar 

  33. 33.

    M. Heinemann, B. Eifert, C. Heiliger, Phys. Rev. B 87, 115111 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)

    ADS  Article  Google Scholar 

  35. 35.

    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    ADS  Article  Google Scholar 

  36. 36.

    D. Wu, Q. Zhang, M. Tao, Phys. Rev. B 73, 235206 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    X. Rocquefelte, M.-H. Whangbo, A. Villesuzanne, S. Jobic, F. Tran, K. Schwarz, P. Blaha, J. Phys.: Condens. Matter 22, 045502 (2010)

    ADS  Google Scholar 

  38. 38.

    W. Siemons, G. Koster, D.H.A. Blank, R.H. Hammond, T.H. Geballe, M.R. Beasley, Phys. Rev. B 79, 195122 (2009)

    ADS  Article  Google Scholar 

  39. 39.

    G. Giovannetti, S. Kumar, A. Stroppa, J. van den Brink, S. Picozzi, J. Lorenzana, Phys. Rev. Lett. 106, 026401 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    P. Tolédano, N. Leo, D.D. Khalyavin, L.C. Chapon, T. Hoffmann, D. Meier, M. Fiebig, Phys. Rev. Lett. 106, 257601 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    B. Himmetoglu, R.M. Wentzcovitch, M. Cococcioni, Phys. Rev. B 84, 115108 (2011)

    ADS  Article  Google Scholar 

  42. 42.

    B.A. Gizhevskiĭ, Yu.P. Sukhorukov, A.S. Moskvin, N.N. Loshkareva, E.V. Mostovshchikova, A.E. Ermakov, E.A. Kozlov, M.A. Uĭmin, V.S. Gaviko, J. Exp. Theor. Phys. 102, 298 (2006)

    ADS  Google Scholar 

  43. 43.

    B.A. Gizhevskii, Y.P. Sukhorukov, N.N. Loshkareva, A.S. Moskvin, E.V. Zenkov, E.A. Kozlov, J. Phys.: Condens. Matter 17, 499 (2005)

    ADS  Google Scholar 

  44. 44.

    S. Warren, W.R. Flavell, A.G. Thomas, J. Hollingworth, P.L. Wincott, A.F. Prime, S. Downes, C. Chen, J. Phys.: Condens. Matter 11, 5021 (1999)

    ADS  Google Scholar 

  45. 45.

    D.J. Singh, Planewaves, Pseudopotentials, and the LAPW Method, 2nd edn. (Springer-Velag, Berlin, 2006)

  46. 46.

    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Structure (K. Schwarz Technical University, Wien, 2001)

  47. 47.

    M. Cococcioni, S. de Gironcoli, Phys. Rev. B 71, 035105 (2005)

    ADS  Article  Google Scholar 

  48. 48.

    V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    ADS  Article  Google Scholar 

  49. 49.

    G.K.H. Madsen, P. Novark, Europhys. Lett. 69, 777 (2005)

    ADS  Article  Google Scholar 

  50. 50.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  51. 51.

    S. Lany, Phys. Rev. B 87, 085112 (2013)

    ADS  Article  Google Scholar 

  52. 52.

    Z.X. Shen, R.S. List, D.S. Dessau, F. Parmigiani, A.J. Arko, R. Bartlett, B.O. Wells, I. Lindau, W.E. Spicer, Phys. Rev. B 42, 8081 (1990)

    ADS  Article  Google Scholar 

  53. 53.

    M.R. Thuler, R.L. Benbow, Z. Hurych, Phys. Rev. B 26, 669 (1982)

    ADS  Article  Google Scholar 

  54. 54.

    L.H. Tjeng, B. Sinkovic, N.B. Brookes, J.B. Goedkoop, R. Hesper, E. Pellegrin, F.M.F. de Groot, S. Altieri, S.L. Hulbert, E. Shekel, G.A. Sawatzky, Phys. Rev. Lett. 78, 1126 (1997)

    ADS  Article  Google Scholar 

  55. 55.

    M.A. Mäki-Jaskari, Model. Simul. Mater. Sci. Eng. 14, 207 (2006)

    ADS  Article  Google Scholar 

  56. 56.

    M. Takahashi, J.-I. Igarashi, Phys. Rev. B 56, 12818 (1997)

    ADS  Article  Google Scholar 

  57. 57.

    J. Ghijsen, L.H. Tjeng, H. Eskes, G.A. Sawatzky, R.L. Johnson, Phys. Rev. B 42, 2268 (1990)

    ADS  Article  Google Scholar 

  58. 58.

    H. Eskes, L.H. Tjeng, G.A. Sawatzky, Phys. Rev. B 41, 288 (1990)

    ADS  Article  Google Scholar 

  59. 59.

    A.K. McMahan, R.M. Martin, S. Satpathy, Phys. Rev. B 38, 6650 (1988)

    ADS  Article  Google Scholar 

  60. 60.

    H. Wieder, A.W. Czanderna, J. Appl. Phys. 37, 184 (1966)

    ADS  Article  Google Scholar 

  61. 61.

    D. Jundale, P. Joshi, S. Sen, V. Patil, J. Mater. Sci.: Mater. Electron. 23, 1492 (2012)

    Google Scholar 

  62. 62.

    A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum 83, 927 (2009)

    Article  Google Scholar 

  63. 63.

    B. Balamurugan, B. Mehta, Thin Solid Films 396, 90 (2001)

    ADS  Article  Google Scholar 

  64. 64.

    D.E. Aspnes, Handbook of Optical Constants of Solids (Academic, New York, 1985)

  65. 65.

    T. Ito, H. Yamaguchi, T. Masumi, S. Adachi, J. Phys. Soc. Jpn 67, 3304 (1998)

    ADS  Article  Google Scholar 

  66. 66.

    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Phys. Stat. Solidi B 249, 1487 (2012)

    ADS  Article  Google Scholar 

  67. 67.

    L.V. Nomerovannaya, A.A. Makhnev, M.M. Kirillova, S.V. Moshkin, M.G. Lyubimov, N.V. Egorova, Superconductivity 3, 159 (1990)

    Google Scholar 

  68. 68.

    A.B. Kuz’menko, D. van der Marel, P.J.M. van Bentum, E.A. Tishchenko, C. Presura, A.A. Bush, Phys. Rev. B 63, 094303 (2001)

    ADS  Article  Google Scholar 

  69. 69.

    C.C. Homes, M. Ziaei, B.P. Clayman, J.C. Irwin, J.P. Franck, Phys. Rev. B 51, 3140 (1995)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.E. Ekuma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ekuma, C., Anisimov, V., Moreno, J. et al. Electronic structure and spectra of CuO. Eur. Phys. J. B 87, 23 (2014). https://doi.org/10.1140/epjb/e2013-40949-5

Download citation

Keywords

  • Computational Methods