Skip to main content
Log in

Coupled influence of damped propagation of dopant and oscillatory confinement sources on excitation kinetics of doped quantum dot

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by oscillations of various confinement sources. The dopant is considered to be propagating under damped condition. For simplicity, we have considered an inherently linear motion of the dopant and the impurity potential has been assumed to have a Gaussian nature. The damping strength and the oscillation frequencies of dot confinement sources of electric and magnetic origin have been found to fabricate the said kinetics in a delicate way. The present study sheds light on how the individual or combined oscillations of different confinement sources could design the excitation kinetics in presence of damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91 (2011)

    Article  ADS  Google Scholar 

  2. J.L. Movilla, J. Planelles, Phys. Rev. B 71, 075319 (2005)

    Article  ADS  Google Scholar 

  3. M.J. Kelly, Low-dimensional Semiconductors (Oxford University Press, Oxford, 1995)

  4. B. Gülveren, Ü. Atav, M. Sahin, M. Tomak, Physica E 30, 143 (2005)

    Article  ADS  Google Scholar 

  5. B. Gülveren, Ü. Atav, M. Tomak, Physica E 28, 482 (2005)

    Article  ADS  Google Scholar 

  6. E. Räsänen, J. Könemann, R.J. Puska, M.J. Haug, R.M. Nieminen, Phys. Rev. B 70, 115308 (2004)

    Article  ADS  Google Scholar 

  7. M. Aichinger, S.A. Chin, E. Krotscheck, E. Räsänen, Phys. Rev. B 73, 195310 (2006)

    Article  ADS  Google Scholar 

  8. W. Xie, Physica B 403, 2828 (2008)

    Article  ADS  Google Scholar 

  9. H. Taş, M. Şahin, J. Appl. Phys. 111, 083702 (2012)

    Article  ADS  Google Scholar 

  10. S.-S. Li, J.-B. Xia, J. Appl. Phys. 101, 093716 (2007)

    Article  ADS  Google Scholar 

  11. R. Khordad, Eur. Phys. J. B 85, 114 (2012)

    Article  ADS  Google Scholar 

  12. F.J. Betancur, J. Sierra-Ortega, R.A. Escorcia, J.D. González, I.D. Mikhailov, Physica E 23, 102 (2004)

    Article  ADS  Google Scholar 

  13. F.J. Betancur, I.D. Mikhailov, L.E. Oliveira, J. Phys. D 31, 3391 (1998)

    Article  ADS  Google Scholar 

  14. E. Kasapoglu, H. Sari, I. Sökmen, Physica B 392, 213 (2007)

    Article  ADS  Google Scholar 

  15. M. Cristea, E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012)

    Article  ADS  Google Scholar 

  16. W. Xie, Physica B 405, 3436 (2010)

    Article  ADS  Google Scholar 

  17. W. Xie, Phys. Lett. A 372, 5498 (2008)

    Article  ADS  MATH  Google Scholar 

  18. A.J. Peter, Phys. Lett. A 355, 59 (2006)

    Article  ADS  Google Scholar 

  19. K.M. Kumar, A.J. Peter, C.W. Lee, Superlattices and Microstructures 51, 184 (2012)

    Article  ADS  Google Scholar 

  20. R. Khordad, Eur. Phys. J. B 78, 399 (2010)

    Article  ADS  Google Scholar 

  21. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  22. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  23. I. Karabulut, S. Baskoutas, J. Comput. Theor. Nanosci. 6, 153 (2009)

    Article  Google Scholar 

  24. M. Şahin, J. Appl. Phys. 106, 063710 (2009)

    Article  ADS  Google Scholar 

  25. B. Çakir, Y. Yakar, A. Özmen, M. Özgür Sezer, M.Şahin, Superlattices and Microstructures 47, 556 (2010)

  26. Y. Yakar, B. Çakir, A. Özmen, Opt. Commun. 283, 1795 (2010)

    Article  ADS  Google Scholar 

  27. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, J. Lumin. 143, 304 (2013)

    Article  Google Scholar 

  28. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    Article  ADS  Google Scholar 

  29. E. Paspalakis, C. Simserides, S. Baskoutas, A.F. Terzis, Physica E 40, 1301 (2008)

    Article  ADS  Google Scholar 

  30. E. Paspalakis, A. Kalini, A.F. Terzis, Phys. Rev. B 73, 073305 (2006)

    Article  ADS  Google Scholar 

  31. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Microelectronic. J. 36, 231 (2005)

    Article  Google Scholar 

  32. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, J. Phys.: Condens. Matter 18, 1877 (2006)

    ADS  Google Scholar 

  33. E. Paspalakis, A.F. Terzis, in Proceedings of the 5th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12-14, 2006, pp. 44–49,

  34. N.K. Datta, M. Ghosh, Solid State Sci. 13, 1531 (2011)

    Article  ADS  Google Scholar 

  35. N.K. Datta, M. Ghosh, J. Appl. Phys. 110, 054314 (2011)

    Article  ADS  Google Scholar 

  36. P.A. Sundqvist, V. Narayan, S. Stafström, M. Willander, Phys. Rev. B 67, 165330 (2003)

    Article  ADS  Google Scholar 

  37. N.K. Datta, S. Pal, M. Ghosh, J. Appl. Phys. 112, 014324 (2012)

    Article  ADS  Google Scholar 

  38. L. Guo, E. Leobandung, S. Chou, Science 275, 649 (1997)

    Article  Google Scholar 

  39. T. Itakura, Y. Tokura, Phys. Rev. B 67, 195320 (2003) and references therein

    Article  ADS  Google Scholar 

  40. K. Yano, T. Ishii, T. Sano, T. Mine, F. Muri, T. Hashimoto, T. Koboyashi, T. Kure, K. Seki, Proc. IEEE. 87, 633 (1999)

    Article  Google Scholar 

  41. M. Dutta, M.A. Stroscio, Advances in Semiconductor Lasers and Applications to Optoelectronics (World Scientific, Singapore, 2000)

  42. A.V. Fedorov, A.V. Baranov, I.D. Rukhlenko, S.V. Goponenko, Phys. Rev. B 71, 195310 (2005)

    Article  ADS  Google Scholar 

  43. P.C. Sersel, Phys. Rev. B 51, 14532 (1995)

    Article  ADS  Google Scholar 

  44. D.F. Schroeter, D.F. Griffits, P.C. Sersel, Phys. Rev. B 54, 1486 (1996)

    Article  ADS  Google Scholar 

  45. X.-Q. Li, Y. Arakawa, Phys. Rev. B 56, 10423 (1997)

    Article  ADS  Google Scholar 

  46. R. Ascazubi, O.C. Akin, T. Zaman, R. Kersting, G. Strasser, Appl. Phys. Lett. 81, 4344 (2002) and references therein.

    Article  ADS  Google Scholar 

  47. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phys. Rev. Lett. 91, 127401 (2003)

    Article  ADS  Google Scholar 

  48. S. Pal, M. Ghosh, Chem. Phys. 423, 15 (2013)

    Article  ADS  Google Scholar 

  49. S. Pal, N.K. Datta, M. Ghosh, J. Phys. Chem. C 117, 14435 (2013)

    Article  Google Scholar 

  50. A.M. Stoneham, B.A. Mckinnon, J. Phys.: Condens. Matter 10, 7665 (1998)

    ADS  Google Scholar 

  51. K. Lis, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003)

    Article  ADS  Google Scholar 

  52. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009)

    Article  ADS  Google Scholar 

  53. M.G. Barseghyan, M.E. Mora-Ramos, C.A. Duque, Eur. Phys. J. B 84, 265 (2011)

    Article  ADS  Google Scholar 

  54. A.M. Ermolaev, G.I. Rashba, Eur. Phys. J. B 66, 223 (2008)

    Article  ADS  MATH  Google Scholar 

  55. Z. Zeng, C.S. Garoufalis, S. Baskoutas, A.F. Terzis, J. Appl. Phys. 112, 064326 (2012)

    Article  ADS  Google Scholar 

  56. N.K. Datta, S. Pal, M. Ghosh, Chem. Phys. 400, 44 (2012)

    Article  ADS  Google Scholar 

  57. L. Jacak, P. Hawrylak, A. Wojos, Quantum Dots (Springer-Verlag, Berlin, 1998)

  58. T. Chakraborty, Quantum Dots–A Survey of the Properties of Artificial Atoms (Elsevier, Amsterdam, 1999)

  59. S. Baskoutas, A.F. Terzis, E. Voutsinas, J. Comput. Theor. Nanosci. 1, 317 (2004)

    Article  Google Scholar 

  60. V. Halonen, P. Hyvönen, P. Pietiläinen, T. Chakraborty, Phys. Rev. B 53, 6971 (1996)

    Article  ADS  Google Scholar 

  61. V. Halonen, P. Pietilinen, T. Chakraborty, Europhys. Lett. 33, 337 (1996)

    ADS  Google Scholar 

  62. J. Adamowski, A. Kwaśniowski, B. Szafran, J. Phys.: Condens. Matter 17, 4489 (2005)

    ADS  Google Scholar 

  63. S. Bednarek, B. Szafran, K. Lis, J. Adamowski, Phys. Rev. B 68, 155333 (2003)

    Article  ADS  Google Scholar 

  64. B. Szafran, S. Bednarek, J. Adamowski, Phys. Rev. B 64, 125301 (2001)

    Article  ADS  Google Scholar 

  65. A. Gharaati, R. Khordad, Superlattices and Microstructures 48, 276 (2010)

    Article  ADS  Google Scholar 

  66. A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, Y. Masumoto, Phys. Rev. B 68, 205316 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Ghosh, M. Coupled influence of damped propagation of dopant and oscillatory confinement sources on excitation kinetics of doped quantum dot. Eur. Phys. J. B 86, 498 (2013). https://doi.org/10.1140/epjb/e2013-40806-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40806-7

Keywords

Navigation