Skip to main content
Log in

Ferrimagnetic nanoparticles for self-controlled magnetic hyperthermia

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the Heisenberg model including single-site uniaxial anisotropy and using a Green’s function technique we studied the influence of size and composition effects on the Curie temperature T C , saturation magnetization M S and coercivity H C of spherical nanoparticles with a structural formula M e 1−x Zn x Fe2O4, Me = Ni, Cu, Co, Mn. It is shown that for x = 0.4–0.5 and d = 10–20 nm these nanoparticles have a T C  = 315 K and are suitable for a self-controlled magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)

    Article  ADS  Google Scholar 

  2. K. Parekh, R.V. Upadhyay, R.V. Mehta, D. Srinivas, J. Appl. Phys. 88, 2799 (2000)

    Article  ADS  Google Scholar 

  3. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Physica B 363, 225 (2005)

    Article  ADS  Google Scholar 

  4. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006)

    Article  ADS  Google Scholar 

  5. S.A. Mazen, S.F. Mansour, H.M. Zaki, Cryst. Res. Technol. 38, 471 (2003)

    Article  Google Scholar 

  6. G.V. Duong, R. Sato Turtelli, W.C. Nunes, E. Schafler, N. Hanh, R. Groessinger, M. Knobel, J. Non-Cryst. Solids 353, 805 (2007)

    Article  ADS  Google Scholar 

  7. G.V. Duong, R. Sato Turtelli, N. Hanh, D.V. Linh, M. Reissner, H. Michor, J. Fidler, G. Wiesinger, R. Groessinger, J. Magn. Magn. Mater. 307, 313 (2006)

    Article  ADS  Google Scholar 

  8. A. Franco Jr., F.C. de Silva, J. Appl. Phys. 113, 17B513 (2013)

    Article  Google Scholar 

  9. E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, K.V. Rao, Nanosc. Res. Lett. 6, 460 (2011)

    Article  ADS  Google Scholar 

  10. S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010)

    Google Scholar 

  11. G. Kozlowski, Magnetic Nanoparticles in Hyperthermia Treatment, Wright State University, CORE Scholar, Special Session 5: Carbon and Oxide Based Nanostructured Materials (2012)

  12. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, J. Alloys Compd. 486, 325 (2009)

    Article  Google Scholar 

  13. S. Singh, M. Singh, N.K. Ralhan, R.K. Kotnala, K.C. Verma, Adv. Mat. Lett. 3, 504 (2012)

    Google Scholar 

  14. M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, J. Mater. Sci. 48, 2969 (2013)

    Article  ADS  Google Scholar 

  15. V. Corral-Flores, D. Bueno-Baqués, F. Paraguay-Delgado, C.E. Botez, R. Ibarra-Gómez, R. Ziolo, Phys. Stat. Sol. A 204, 1742 (2007)

    Article  ADS  Google Scholar 

  16. T. Anjaneyulu, A.T. Raghavender, K.V. Kumar, P.N. Murthy, K. Narendra, Ind. J. Res. 2, 310 (2013)

    Google Scholar 

  17. Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.-M. Greneche, F. Chau, S. Ammar, Chem. Mater. 22, 5420 (2010)

    Article  Google Scholar 

  18. M. Hamedoun, A. Benyoussef, M. Bousmina, J. Magn. Magn. Mater. 322, 3227 (2010)

    Article  ADS  Google Scholar 

  19. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, J. Appl. Phys. 109, 083939 (2011)

    Article  ADS  Google Scholar 

  20. V. Mohite, Ph.D. thesis, Florida State University, 2004

  21. S.S. Hayek, C. Chen, G. Flores, C.D. Batich, Y.S. Haik, in MRS Proceedings, 2007, Vol. 1019

  22. C. Xiaoming, Z. Dongsheng, T. Qiusha, G. Ning, Z. Susu, Z.Z. Jia, Zhongshan Univ. J. Nat. Sci. 3, 23 (2007)

    Google Scholar 

  23. K. Parekh, R.V. Upadhyay, L. Belova, K.V. Rao, Nanotechnology 17, 5970 (2006)

    Article  ADS  Google Scholar 

  24. M. Jeun, S.J. Moon, H. Kobayashi, H.Y. Shin, A. Tomitaka, Y.J. Kim, Y. Takemura, S.H. Paek, K.H. Park, K.W. Chung, S. Bae, Appl. Phys. Lett. 96, 202511 (2010)

    Article  ADS  Google Scholar 

  25. J. Zhang, D. Zhang, Sensors 9, 7058 (2009)

    Article  Google Scholar 

  26. Y. Ichiyanagi, Y. Moro, H. Katayanagi, S. Kimura, D. Shigeoka, T. Hiroki, T. Mashino, J. Therm. Anal. Calorim. 99, 83 (2010)

    Article  Google Scholar 

  27. A.B. van Groenou, P.F. Bougers, A.L. Stuyts, Mater. Sci. Eng. 3, 317 (1968/1969)

    Article  Google Scholar 

  28. J. Slama, A. Grukova, M. Usakova, E. Usak, J. Subrt, J. Lukac, J. Elect. Eng. 57, 159 (2006)

    Google Scholar 

  29. M.A. Gilleo, J. Phys. Chem. Sol. 13, 33 (1960)

    Article  ADS  Google Scholar 

  30. I. Nowik, J. Appl. Phys. 40, 872 (1969)

    Article  ADS  Google Scholar 

  31. Y. Yafel, C. Kittel, Phys. Rev. 87, 290 (1952)

    Article  ADS  Google Scholar 

  32. P.G. Bercoff, H.R. Bertorello, J. Magn. Magn. Mater 213, 56 (2000)

    Article  ADS  Google Scholar 

  33. M. Rahimi, P. Kameli, M. Rajbar, H. Hejihashemi, H. Salamati, J. Mater. Sci. 48, 2696 (2013)

    Article  Google Scholar 

  34. N.S.S. Murthy, M.G. Natera, S.I. Yossef, R.J. Begum, Phys. Rev. 181, 969 (1969)

    Article  ADS  Google Scholar 

  35. H.H. Joshi, R.G. Kulkarni, J. Mat. Sci. 21, 2138 (1986)

    Article  ADS  Google Scholar 

  36. K.S. Lohar, S.M. Patange, S.E. Shirsath, V.S. Surywansh, S.S. Gaikwad, S.S. Jadhav, N. Kulkarni, Imt. J. Adv. Eng. Technol. 3, 354 (2012)

    Google Scholar 

  37. L.K. Leung, B.J. Evans, A.H. Morrish, Phys. Rev. B 8, 29 (1973)

    Article  ADS  Google Scholar 

  38. M. Ajmal, A. Maqsood, J. Alloys Compd. 460, 54 (2008)

    Article  Google Scholar 

  39. S. Noor, R. Islam, S.S. Sikder, M.A. Hakim, S.M. Hoque, S. Rehaman, M.O. Rehaman, J. Mater. Sci. Eng. A 1, 1000 (2011)

    Google Scholar 

  40. J.M. Wesselinowa, I. Apostolova, J. Phys.: Condens. Matter 19, 406235 (2007)

    Google Scholar 

  41. J. Korecki, M. Przybylski, U. Gradmann, J. Magn. Magn. Mater. 89, 325 (1990)

    Article  ADS  Google Scholar 

  42. J. Smit, A.P.J. Wijn, Ferrites, Hexagonal Ferrites (Philips Tech. Library, Eindhoven, 1959)

  43. S.A. Mazen, S.F. Mansour, H.M. Zaki, Cryst. Res. Technol. 38, 471 (2003)

    Article  Google Scholar 

  44. Sh. Auhfer, D.P. Paul, Md.A. Hakim, Sh. Akhfer, Sh.M. Hoque, A.N. Das, J. Mod. Phys. 3, 398 (2012)

    Article  Google Scholar 

  45. E. De Grave, R.M. Persoons, R.E. Vanderberghe, P.M.A. de Bakker, Phys. Rev. B 47, 5881 (1993)

    Article  ADS  Google Scholar 

  46. H.S. Belson, C.J. Kriessman, J. Appl. Phys. 30, 170 (1959)

    Article  ADS  Google Scholar 

  47. J.K. Galt, B.T. Mafthias, J.P. Remeika, Phys. Rev. 79, 1391 (1950)

    Article  ADS  Google Scholar 

  48. T. Okamura, Y. Kojima, Phys. Rev. 86, 1040 (1952)

    Article  ADS  Google Scholar 

  49. S. Tikadzumi, Physics of Magnetism (Wiley, New York, 1964)

  50. J.F. Dillon, S. Geschwind, V. Jeccavino, Phys. Rev. 100, 750 (1955)

    Article  ADS  Google Scholar 

  51. M.L. Glasser, F.J. Milford, Phys. Rev. 130, 1783 (1963)

    Article  ADS  Google Scholar 

  52. J.M. Wesselinowa, I. Apostolova, J. Phys.: Condens. Matter 19, 216208 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Wesselinowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolov, A., Apostolova, I. & Wesselinowa, J. Ferrimagnetic nanoparticles for self-controlled magnetic hyperthermia. Eur. Phys. J. B 86, 483 (2013). https://doi.org/10.1140/epjb/e2013-40791-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40791-9

Keywords

Navigation