Skip to main content
Log in

The structural, electronic and optical properties of CuGa (SexS1-x)2 compounds from first-principle calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, electronic and optical properties of the CuGa (Se x S1-x )2 alloy system have been performed systematic within generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Cambridge serial total energy package (CASTEP) code. We calculate the lattice parameters and axial ratio, which agree with the experimental values quite well. The anion position parameters u are also predicted using the model of Abrahams and Bernstein and the results seem to be trustworthy as compared to the experimental and theoretical values. The total and part density of states are discussed which follow the common rule of the conventional semiconductors. The static dielectric tenser and refractive index are summarized compared with available experimental and theoretical values. Also the spectra of the dielectric functions, refractive index, reflectance, absorption coefficient and real parts of photoconductivity are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H.L. Goodman, J. Phys. Chem. Solids 6, 305 (1958)

    Article  ADS  Google Scholar 

  2. J.L. Shay, J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon Press, Oxford, 1975), Vol. 1, p. 244

  3. M.C. Ohmer, R. Randey, B.H. Bairamov, Mater. Res. Bull. 23, 16 (1998)

    Google Scholar 

  4. R.W. Birkmire, E. Eser, Annu. Rev. Mater. Sci. 27, 625 (1997)

    Article  ADS  Google Scholar 

  5. T. Xu, C.-Y. Zhang, G.-M. Wei, J. Li, X.-H. Meng, B. Tian, Eur. Phys. J. B 55, 323 (2007)

    Article  ADS  Google Scholar 

  6. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455 (2009)

    Article  ADS  Google Scholar 

  7. S.F. Chichibu, T. Ohmori, N. Shibata, T. Koyama, T. Onuma, J. Phys. Chem. Solids 66, 1868 (2005)

    Article  ADS  Google Scholar 

  8. T.J. Coutts, K.A. Emery, J.S. Ward, Prog. Photovoltaics 10, 195 (2002)

    Article  Google Scholar 

  9. T.J. Coutts, J.S. Ward, D.L. Young, K.A. Emery, T.A. Gessert, R. Noufi, Prog. Photovoltaics 11, 359 (2003)

    Article  Google Scholar 

  10. I.V. Bodnar, Inorg. Mater. 38, 647 (2002)

    Article  Google Scholar 

  11. V.Yu. Rud, Yu.V. Rud, R.N. Bekimbetov, V.F. Gremenok, I.A. Viktorov, I.V. Bodnar, D.D. Krivolap, Semiconductor 33, 757 (1999)

    Article  ADS  Google Scholar 

  12. I.V. Bodnar, V.S. Gurin, A.P. Molochko, N.P. Solovei, P.V. Prokoshin, K.V. Yumashev, J. Appl. Spectrosc. 67, 482 (2000)

    Article  ADS  Google Scholar 

  13. S. Chen, X.G. Gong, Phys. Rev. B 75, 205209 (2007)

    Article  ADS  Google Scholar 

  14. I. Aguilera, J. Vidal, P. Wahn’on, L. Reining, S. Botti, Phys. Rev. B 84, 085145 (2011)

    Article  ADS  Google Scholar 

  15. B. Xu, X. Li, Z. Qin, C. Long, D. Yang, J. Sun, L. Yi, Physica B 406, 946 (2011)

    Article  ADS  Google Scholar 

  16. C. Parlak, R. Eryiǧit, Phys. Rev. B 73, 245217 (2006)

    Article  ADS  Google Scholar 

  17. M. Quintero, C. Rincón, P. Grima, J. Appl. Phys. 65, 2739 (1989)

    Article  ADS  Google Scholar 

  18. J. González, E. Calderon, F. Capet, L. Aioouy, J.C. Chervin, Jpn J. Appl. Phys. 32, 462 (1993)

    Article  Google Scholar 

  19. A.A. Lavrent’ev, B.V. Gabrel’yan, I.Ya. Nikiforov, Phys. Solid State 43, 1438 (2001)

    Article  ADS  Google Scholar 

  20. Y.Z. Zhan, M.J. Pang, H.Z. Wang, Y. Du, Curr. Appl. Phys. 12, 373 (2012)

    Article  ADS  Google Scholar 

  21. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  23. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  26. B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  MATH  ADS  Google Scholar 

  27. T. Sakuntala, A.K. Arora, Phys. Rev. B 53, 15667 (1996)

    Article  ADS  Google Scholar 

  28. P.W. Yu, Y.S. Park, S.P. Faile, J.E. Ehret, Appl. Phys. Lett. 26, 717 (1975)

    Article  ADS  Google Scholar 

  29. L. Garbato, F. Ledda, R. Rucci, Prog. Cryst. Growth Charact. 15, 1 (1987)

    Article  Google Scholar 

  30. S. Shirakata, S. Chichibu, S. Isomura, Jpn J. Appl. Phys. 36, 7160 (1997)

    Article  ADS  Google Scholar 

  31. P. Nayebi, K. Mirabbaszadeh, M. Shamshirsaz, Physica B 416, 55 (2013)

    Article  ADS  Google Scholar 

  32. L. Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  33. J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984)

    Article  ADS  Google Scholar 

  34. J.E. Jaffe, A. Zunger, Phys. Rev. B 27, 5176 (1983)

    Article  ADS  Google Scholar 

  35. F.D. Jiang, J.Y. Feng, Semicond. Sci. Technol. 23, 025001 (2008)

    Article  ADS  Google Scholar 

  36. J. Vidal, S. Botti, P. Olsson, J.-F. Guillemoles, L. Reining, Phys. Rev. Lett. 104, 056401 (2010)

    Article  ADS  Google Scholar 

  37. S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 55, 796 (1971)

    Article  ADS  Google Scholar 

  38. S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 59, 5415 (1973)

    Article  ADS  Google Scholar 

  39. J.C. Philips, Covalent Bonding in Crystals (Chicago Univ. Press, Chicago, 1969)

  40. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  41. Semiconductors: Data Handbook, 3rd edn., edited by O. Madelung (Springer, Berlin, 2004)

  42. S.N. Rashkeev, W.R.L. Lambrecht, Phys. Rev. B 63, 165212 (2001)

    Article  ADS  Google Scholar 

  43. S. Saha, T.P. Sinha, Phys. Rev. B 62, 8828 (2000)

    Article  ADS  Google Scholar 

  44. G. Wang, S. Wu, Z.H. Geng, S.Y. Wang, L.Y. Chen, Y. Jia, Opt. Commun. 283, 4307 (2010)

    Article  ADS  Google Scholar 

  45. G.D. Boyd, H. Kasper, J.H. McFee, IEEE J. Quantum Electron. 7, 563 (1971)

    Article  ADS  Google Scholar 

  46. G.D. Boyd, H. Kasper, J.H. McFee, F.G. Storz, IEEE J. Quantum Electron. 8, 900 (1972)

    Article  ADS  Google Scholar 

  47. S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, B. Abbar, Comput. Mater. Sci. 38, 223 (2006)

    Article  Google Scholar 

  48. D.R. Penn, Phys. Rev. 128, 2093 (1962)

    Article  MATH  ADS  Google Scholar 

  49. R.H. Bube, Photovoltaic Materials (Imperial College Press, London, 1998), Vol. 1, pp. 1–33

  50. M.A. Green, K. Emery, Y. Hisikawa, W. Warta, Prog. Photovoltaics 15, 425 (2007)

    Article  Google Scholar 

  51. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Yong Jiao or Xian-Zhou Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, KS., Jiao, ZY., Zhang, XZ. et al. The structural, electronic and optical properties of CuGa (SexS1-x)2 compounds from first-principle calculations. Eur. Phys. J. B 86, 469 (2013). https://doi.org/10.1140/epjb/e2013-40736-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40736-4

Keywords

Navigation