Skip to main content
Log in

Transport across an Anderson quantum dot in the intermediate coupling regime

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We describe linear and nonlinear transport across a strongly interacting single impurity Anderson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling Γ of the order of the thermal energy k B T. The coupling is large enough that sequential tunneling processes (second order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics. Upon applying a density matrix approach, the current is expressed in terms of rates obtained by considering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations. We call this the “dressed second order” (DSO) approximation. One advantage of the DSO is that, still in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling broadened conductance peaks. When the temperature is decreased even further (k B T < Γ), the DSO captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly of the differential conductance versus applied bias, an enhancement of the conductance with decreasing temperature as well as universality of the shape of the conductance as function of the temperature. We can without complications address the case of a spin degenerate level split energetically by a magnetic field. In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore, we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty orbital regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  2. Single Charge Tunneling, edited by H. Grabert, M.H. Devoret (Plenum, New York, 1992)

  3. Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, G. Schön (NATO ASI Series, 1996), vol. 345

  4. J. Kondo, Progr. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  5. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  6. D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  7. D. Goldhaber-Gordon, J. Göres, M.A. Kastner, Hadas Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. Lett. 81, 5225 (1998)

    Article  ADS  Google Scholar 

  8. J. Schmid, J. Weis, K. Eberl, K.V. Klitzing, Physica B 256-258, 182 (1998)

    Article  ADS  Google Scholar 

  9. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  10. W. Van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Science 289, 2105 (2000)

    Article  ADS  Google Scholar 

  11. M. Grobis, I.G. Rau, R.M. Potok, H. Shtrikman, D. Goldhaber-Gordon, Phys. Rev. Lett. 100, 246601 (2008)

    Article  ADS  Google Scholar 

  12. J. Nygård, D.H. Cobden, P.E. Lindelof, Nature 408, 342 (2000)

    Article  ADS  Google Scholar 

  13. P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Nature 434, 484 (2005)

    Article  ADS  Google Scholar 

  14. S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, C. Schönenberger, Nat. Phys. 1, 99 (2005)

    Article  Google Scholar 

  15. J.R. Hauptmann, J. Paaske, P.E. Lindelof, Nat. Phys. 4, 373 (2008)

    Article  Google Scholar 

  16. M. Gaass, A.K. Hüttel, K. Kang, I. Weymann, J. von Delft, C. Strunk, Phys. Rev. Lett. 107, 176808 (2011)

    Article  ADS  Google Scholar 

  17. S. Csonka, L. Hofstetter, F. Freitag, S. Oberholzer, C. Schönenberger, T.S. Jespersen, M. Aagesen, J. Nygård, Nano Lett. 8, 3932 (2008)

    Article  ADS  Google Scholar 

  18. A.V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, D. Mahalu, Phys. Rev. B 84, 245316 (2011)

    Article  ADS  Google Scholar 

  19. A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, Science 306, 86 (2004)

    Article  ADS  Google Scholar 

  20. D.V. Averin, A.N. Korotkov, K.K. Likharev, Phys. Rev. B 44, 6199 (1991)

    Article  ADS  Google Scholar 

  21. C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991)

    Article  ADS  Google Scholar 

  22. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  Google Scholar 

  23. E. Lörtscher, H.B. Weber, H. Riel, Phys. Rev. Lett. 98, 176807 (2007)

    Article  ADS  Google Scholar 

  24. A. Cottet, M.S. Choi, Phys. Rev. B 74, 235316 (2006)

    Article  ADS  Google Scholar 

  25. S. Koller, M. Grifoni, J. Paaske, Phys. Rev. B 85, 045313 (2012)

    Article  ADS  Google Scholar 

  26. L.I. Glazman, M.E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 47, 378 (1988) [J. Exp. Theor. Phys. Lett. 47, 452 (1988)]

    Google Scholar 

  27. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  28. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  29. N.S. Wingreen, Y. Meir, Phys. Rev. B 49, 11040 (1994)

    Article  ADS  Google Scholar 

  30. D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 72, 3401 (1994)

    Article  ADS  Google Scholar 

  31. J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B 54, 16820 (1996)

    Article  ADS  Google Scholar 

  32. R. Bulle, T. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  33. J. Eckel, F. Heidrich-Meisner, S. Jakobs, M. Thorwart, M. Pletyukhov, R. Egger, New J. Phys. 12, 043042 (2010)

    Article  ADS  Google Scholar 

  34. H. Schoeller, G. Schön, Phys. Rev. B 50, 18436 (1994)

    Article  ADS  Google Scholar 

  35. J.N. Pedersen, A. Wacker, Phys. Rev. B 72, 195330 (2005)

    Article  ADS  Google Scholar 

  36. O. Karlström et al., J. Phys. A 46, 065301 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  37. J.S. Jin, X. Zheng, Y. Yan, J. Chem. Phys. 128, 234703 (2008)

    Article  ADS  Google Scholar 

  38. R.B. Saptsov, M.R. Wegewijs, Phys. Rev. B 86, 235432 (2012)

    Article  ADS  Google Scholar 

  39. A. Levy Yeyati, J.C. Cuevas, A. López-Dávalos, A. Martin-Rodero, Phys. Rev. B 55, R6137 (1997)

    Article  ADS  Google Scholar 

  40. J.P. Pekola et al., Phys. Rev. Lett. 105, 026803 (2010)

    Article  ADS  Google Scholar 

  41. A.D. Gottlieb, L. Wesoloski, Nanotechnology 17, R57 (2006)

    Article  ADS  Google Scholar 

  42. U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)

    Article  Google Scholar 

  43. K. Blum, Density Matrix: Theory and Applications (Plenum Press, New York, 1996)

  44. H. Schoeller, Habilitationsschrift, http://digbib.ubka.uni-karlsruhe.de/volltexte/44097 (1997)

  45. J. Kern, Workshop Report 2010, http://homepages-nw.uni-regensburg.de/kej62310/index/index.html (2012)

  46. M. Grifoni, M. Sassetti, U. Weiss, Phys. Rev. E 53, R2033 (1996)

    Article  ADS  Google Scholar 

  47. U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 2012)

  48. S. Koller, M. Grifoni, M. Leijnse, M.R. Wegewijs, Phys. Rev. B 82, 235307 (2010)

    Article  ADS  Google Scholar 

  49. N.W. Ashcroft, N.D. Mermin, Solid State Physics (W.B. Saunders Company, 1976)

  50. J. König, Diplomarbeit, Universität Karlsruhe (1995)

  51. T.A. Costi, A.C. Hewson, V. Zlatić, J. Phys.: Condens. Matter 6, 2519 (1994)

    Article  ADS  Google Scholar 

  52. S. Schmitt, F.B. Anders, Phys. Rev. Lett. 107, 056801 (2011)

    Article  ADS  Google Scholar 

  53. A.C. Hewson, J. Bauer, A. Oguri, J. Phys.: Condens. Matter 17, 5413 (2005)

    Article  ADS  Google Scholar 

  54. C.H.L. Quay, J. Cumings, S.J. Gamble, R. de Picciotto, H. Kataura, D. Goldhaber-Gordon, Phys. Rev. B 76, 245311 (2007)

    Article  ADS  Google Scholar 

  55. H. Schoeller, J. König, Phys. Rev. Lett. 84, 3686 (2000)

    Article  ADS  Google Scholar 

  56. T.A. Costi, V. Zlatić, Phys. Rev. B 81, 235127 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, J., Grifoni, M. Transport across an Anderson quantum dot in the intermediate coupling regime. Eur. Phys. J. B 86, 384 (2013). https://doi.org/10.1140/epjb/e2013-40618-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40618-9

Keywords

Navigation