Abstract
We describe linear and nonlinear transport across a strongly interacting single impurity Anderson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling Γ of the order of the thermal energy k B T. The coupling is large enough that sequential tunneling processes (second order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics. Upon applying a density matrix approach, the current is expressed in terms of rates obtained by considering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations. We call this the “dressed second order” (DSO) approximation. One advantage of the DSO is that, still in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling broadened conductance peaks. When the temperature is decreased even further (k B T < Γ), the DSO captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly of the differential conductance versus applied bias, an enhancement of the conductance with decreasing temperature as well as universality of the shape of the conductance as function of the temperature. We can without complications address the case of a spin degenerate level split energetically by a magnetic field. In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore, we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty orbital regime.
Similar content being viewed by others
References
P.W. Anderson, Phys. Rev. 124, 41 (1961)
Single Charge Tunneling, edited by H. Grabert, M.H. Devoret (Plenum, New York, 1992)
Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, G. Schön (NATO ASI Series, 1996), vol. 345
J. Kondo, Progr. Theor. Phys. 32, 37 (1964)
A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)
D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998)
D. Goldhaber-Gordon, J. Göres, M.A. Kastner, Hadas Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. Lett. 81, 5225 (1998)
J. Schmid, J. Weis, K. Eberl, K.V. Klitzing, Physica B 256-258, 182 (1998)
S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998)
W. Van der Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Science 289, 2105 (2000)
M. Grobis, I.G. Rau, R.M. Potok, H. Shtrikman, D. Goldhaber-Gordon, Phys. Rev. Lett. 100, 246601 (2008)
J. Nygård, D.H. Cobden, P.E. Lindelof, Nature 408, 342 (2000)
P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Nature 434, 484 (2005)
S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, C. Schönenberger, Nat. Phys. 1, 99 (2005)
J.R. Hauptmann, J. Paaske, P.E. Lindelof, Nat. Phys. 4, 373 (2008)
M. Gaass, A.K. Hüttel, K. Kang, I. Weymann, J. von Delft, C. Strunk, Phys. Rev. Lett. 107, 176808 (2011)
S. Csonka, L. Hofstetter, F. Freitag, S. Oberholzer, C. Schönenberger, T.S. Jespersen, M. Aagesen, J. Nygård, Nano Lett. 8, 3932 (2008)
A.V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, D. Mahalu, Phys. Rev. B 84, 245316 (2011)
A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, Science 306, 86 (2004)
D.V. Averin, A.N. Korotkov, K.K. Likharev, Phys. Rev. B 44, 6199 (1991)
C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991)
M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)
E. Lörtscher, H.B. Weber, H. Riel, Phys. Rev. Lett. 98, 176807 (2007)
A. Cottet, M.S. Choi, Phys. Rev. B 74, 235316 (2006)
S. Koller, M. Grifoni, J. Paaske, Phys. Rev. B 85, 045313 (2012)
L.I. Glazman, M.E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 47, 378 (1988) [J. Exp. Theor. Phys. Lett. 47, 452 (1988)]
T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)
Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)
N.S. Wingreen, Y. Meir, Phys. Rev. B 49, 11040 (1994)
D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 72, 3401 (1994)
J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B 54, 16820 (1996)
R. Bulle, T. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)
J. Eckel, F. Heidrich-Meisner, S. Jakobs, M. Thorwart, M. Pletyukhov, R. Egger, New J. Phys. 12, 043042 (2010)
H. Schoeller, G. Schön, Phys. Rev. B 50, 18436 (1994)
J.N. Pedersen, A. Wacker, Phys. Rev. B 72, 195330 (2005)
O. Karlström et al., J. Phys. A 46, 065301 (2013)
J.S. Jin, X. Zheng, Y. Yan, J. Chem. Phys. 128, 234703 (2008)
R.B. Saptsov, M.R. Wegewijs, Phys. Rev. B 86, 235432 (2012)
A. Levy Yeyati, J.C. Cuevas, A. López-Dávalos, A. Martin-Rodero, Phys. Rev. B 55, R6137 (1997)
J.P. Pekola et al., Phys. Rev. Lett. 105, 026803 (2010)
A.D. Gottlieb, L. Wesoloski, Nanotechnology 17, R57 (2006)
U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)
K. Blum, Density Matrix: Theory and Applications (Plenum Press, New York, 1996)
H. Schoeller, Habilitationsschrift, http://digbib.ubka.uni-karlsruhe.de/volltexte/44097 (1997)
J. Kern, Workshop Report 2010, http://homepages-nw.uni-regensburg.de/kej62310/index/index.html (2012)
M. Grifoni, M. Sassetti, U. Weiss, Phys. Rev. E 53, R2033 (1996)
U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 2012)
S. Koller, M. Grifoni, M. Leijnse, M.R. Wegewijs, Phys. Rev. B 82, 235307 (2010)
N.W. Ashcroft, N.D. Mermin, Solid State Physics (W.B. Saunders Company, 1976)
J. König, Diplomarbeit, Universität Karlsruhe (1995)
T.A. Costi, A.C. Hewson, V. Zlatić, J. Phys.: Condens. Matter 6, 2519 (1994)
S. Schmitt, F.B. Anders, Phys. Rev. Lett. 107, 056801 (2011)
A.C. Hewson, J. Bauer, A. Oguri, J. Phys.: Condens. Matter 17, 5413 (2005)
C.H.L. Quay, J. Cumings, S.J. Gamble, R. de Picciotto, H. Kataura, D. Goldhaber-Gordon, Phys. Rev. B 76, 245311 (2007)
H. Schoeller, J. König, Phys. Rev. Lett. 84, 3686 (2000)
T.A. Costi, V. Zlatić, Phys. Rev. B 81, 235127 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kern, J., Grifoni, M. Transport across an Anderson quantum dot in the intermediate coupling regime. Eur. Phys. J. B 86, 384 (2013). https://doi.org/10.1140/epjb/e2013-40618-9
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2013-40618-9