Skip to main content
Log in

Analogies in electronic properties of graphene wormhole and perturbed nanocylinder

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the “graphene blackhole” is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gonzalez, J. Herrero, Nucl. Phys. B 825, 426 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  3. R. Haydock, Solid State Physics (Academic, New York, 1980), Vol. 35, p. 216

  4. R. Tamura, M. Tsukada, Phys. Rev. B 49, 7697 (1994)

    Article  ADS  Google Scholar 

  5. Y.N. Joglekar, A. Saxena, Phys. Rev. B 80, 153405 (2009)

    Article  ADS  Google Scholar 

  6. V. Atanasov, A. Saxena, Phys. Rev. B 81, 205409 (2010)

    Article  ADS  Google Scholar 

  7. V. Atanasov, A. Saxena, J. Phys.: Condens. Matter 23, 175301 (2011)

    ADS  Google Scholar 

  8. M. Pudlak, R. Pincak, Eur. Phys. J. B 67, 565 (2009)

    Article  ADS  Google Scholar 

  9. M. Pudlak, R. Pincak, Phys. Rev. A 79, 033202 (2009)

    Article  ADS  Google Scholar 

  10. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  11. J. Smotlacha, R. Pincak, M. Pudlak, Eur. Phys. J. B 84, 255 (2011)

    Article  ADS  Google Scholar 

  12. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  13. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1964)

  14. J. Smotlacha, R. Pincak, M. Pudlak, Phys. Lett. A 376, 45 (2012)

    Article  Google Scholar 

  15. A. Iorio, G. Lambiase, Phys. Lett. B 716, 334 (2012)

    Article  ADS  Google Scholar 

  16. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  17. R. Dandoloff, A. Saxena, B. Jensen, Phys. Rev. A 81, 014102 (2010)

    Article  ADS  Google Scholar 

  18. Y. Shimomura, Y. Takane, K. Wakabayashi, Electronic States and Local Density of States of Graphene Corner Edge, in Proceedings of the JPS 2010 Spring Meeting – The 65th JPS Annual Meeting, Okayama University, 2010

  19. V.M. Pereira, A.H. Castro Neto, H.Y. Liang, L. Mahadevan, Phys. Rev. Lett. 105, 156603 (2010)

    Article  ADS  Google Scholar 

  20. D.V. Kolesnikov, V.A. Osipov, Europhys. Lett. 78, 47002 (2007)

    Article  ADS  Google Scholar 

  21. E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva, The Open Nuclear and Particle Physics Journal 4, 27 (2011)

    Article  Google Scholar 

  22. M. Mucha-Kruczyski, I.L. Aleiner, V.I. Falko, Phys. Rev. B 84, 041404(R) (2011)

    Article  ADS  Google Scholar 

  23. G.G. Jernigan et al., J. Vac. Sci. Technol. B 30, 03D110 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pincak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pincak, R., Smotlacha, J. Analogies in electronic properties of graphene wormhole and perturbed nanocylinder. Eur. Phys. J. B 86, 480 (2013). https://doi.org/10.1140/epjb/e2013-40594-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40594-0

Keywords

Navigation