Skip to main content
Log in

Melting of Coulomb-interacting classical particles in 2D irregular traps

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The “melting” of self-formed rigid structures made of a small number of interacting classical particles confined in an irregular two-dimensional space is investigated using Monte Carlo simulations. It is shown that the interplay of long-range Coulomb repulsions between these particles and the irregular confinement yields a solid-like phase at low temperatures that possesses a bond-orientational order, however, the positional order is depleted even at the lowest temperatures. Upon including thermal fluctuations, this solid-like phase smoothly crosses over to a liquid-like phase by destroying the bond-orientational order. The collapse of solidity is shown to be defect mediated, and aided by the proliferation of free disclinations. The behaviour of different physical observables across the crossover region is studied. These results will help us quantifying the melting found in experiments on systems with confined geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Huang, Statistical Mechanics (Wiley, New York, 1963)

  2. A.R. Ubbelohde, Melting and Crystal Structure (University Press, Oxford, 1965)

  3. T.V. Ramakrishnan, M. Yussouff, Phys. Rev. B 19, 2775 (1979)

    Article  ADS  Google Scholar 

  4. D. Frenkel, J.P. McTague, Ann. Rev. Phys. Chem. 31, 491 (1980)

    Article  ADS  Google Scholar 

  5. K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)

    Article  ADS  Google Scholar 

  6. A. Gelfert, W. Nolting, J. Phys.: Condens. Matter 13, 505 (2001)

    ADS  Google Scholar 

  7. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  8. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. A. Ghosal, A.D. Güclü, C.J. Umrigar, D. Ullmo, H.U. Baranger, Nat. Phys. 2, 336 (2006)

    Article  Google Scholar 

  10. A. Schella, T. Miksch, A. Melzer, J. Schablinski, B. Dietmar, A. Piel, H. Thomsen, P. Ludwig, M. Bonitz, Phys. Rev. E 84, 056402 (2011)

    Article  ADS  Google Scholar 

  11. I.M. Buluta, S. Hasegawa, J. Phys. B 42, 154004 (2009)

    Article  ADS  Google Scholar 

  12. D.G Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, J. Low. Temp. Phys. 166, 107 (2012)

    Article  ADS  Google Scholar 

  13. C. Yannouleas, U. Landman, Rep. Prog. Phys. 70, 2067 (2007)

    Article  ADS  Google Scholar 

  14. A. Melzer, B. Buttenschön, T. Miksch, M. Passvogel, D. Block, O. Arp, A. Piel, Plasma Phys. Control. Fusion 52, 124028 (2010)

    Article  ADS  Google Scholar 

  15. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  16. B. Tanatar, D.M Ceperley, Phys. Rev. B 39, 5005 (1989)

    Article  ADS  Google Scholar 

  17. R. Egger, W. Häusler, C.H. Mak, H. Grabert, Phys. Rev. Lett. 82, 3320 (1999)

    Article  ADS  Google Scholar 

  18. A.V. Filinov, M. Bonitz, Yu.E. Lozoviki, Phys. Rev. Lett. 86, 3851 (2001)

    Article  ADS  Google Scholar 

  19. A. Ghosal, A.D. Güclü, C.J. Umrigar, D. Ullmo, H.U. Baranger, Phys. Rev. B 76, 085341 (2007)

    Article  ADS  Google Scholar 

  20. A.D. Güclü, A. Ghosal, C.J. Umrigar, H.U. Baranger, Phys. Rev. B 77, 041301 (2008)

    Article  ADS  Google Scholar 

  21. R.C. Gann, S. Chakravarty, G.V. Chester, Phys. Rev. B 20, 326 (1979)

    Article  ADS  Google Scholar 

  22. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  23. B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.P. Young, Phys. Rev. B 19, 1855 (1979)

    Article  ADS  Google Scholar 

  25. D.R. Nelson, B.I. Halperin, Phys. Rev. B 19, 2457 (1979)

    Article  ADS  Google Scholar 

  26. V.M. Bedanov, F.M. Peeters, Phys. Rev. B 49, 2667 (1994)

    Article  ADS  Google Scholar 

  27. J. Schablinski, D. Block, A. Piel, A. Melzer, H. Thomsen, H. Kählert, M. Bonitz, Phys. Plasmas 19, 013705 (2012)

    Article  ADS  Google Scholar 

  28. H.M. Thomas, G.E. Morfill, J. Vac. Sci. Technol. A 14, 501 (1994)

    Article  ADS  Google Scholar 

  29. V. Nosenko, J. Goree, A. Piel, Phys. Plasmas 13, 032106 (2006)

    Article  ADS  Google Scholar 

  30. P.N. Walker, G. Montambaux, Y. Gefen, Phys. Rev. B 60, 2541 (1999)

    Article  ADS  Google Scholar 

  31. C.M. Marcus et al., Chaos Solitons Fractals 8, 1261 (1997)

    Article  ADS  Google Scholar 

  32. U. Sivan, R. Berkovits, Y. Aloni, O. Prus, A. Auerbach, G. Ben-Yoseph, Phys. Rev. Lett. 77, 1123 (1996)

    Article  ADS  Google Scholar 

  33. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)

    Article  ADS  Google Scholar 

  34. I.L. Aleiner, P.W. Brouwer, L.I. Glazman, Phys. Rep. 358, 309 (2002)

    Article  ADS  Google Scholar 

  35. E. Abrahams, S.V. Kravchenko, M.P. Sarachik, Rev. Mod. Phys. 73, 251 (2001)

    Article  ADS  Google Scholar 

  36. S.T. Chui, B. Tanatar, Phys. Rev. Lett. 74, 458 (1995)

    Article  ADS  Google Scholar 

  37. X. Waintal, Phys. Rev. B 73, 075417 (2006)

    Article  ADS  Google Scholar 

  38. B. Spivak, S.A. Kivelson, Ann. Phys. 321, 2071 (2006)

    Article  ADS  MATH  Google Scholar 

  39. A.A. Koulakov, F.G. Pikus, B.I. Shklovskii, Phys. Rev. B 55, 9223 (1996)

    Article  ADS  Google Scholar 

  40. P.N. Walker, G. Montambaux, Y. Gefen, Phys. Rev. B 60, 2541 (1999)

    Article  ADS  Google Scholar 

  41. S.W.S. Apolinario, B. Partoens, F.M. Peeters, Phys. Rev. E 74, 031107 (2006)

    Article  ADS  Google Scholar 

  42. B. Reusch, R. Egger, Europhys. Lett. 64, 84 (2003)

    Article  ADS  Google Scholar 

  43. O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep. 223, 43 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  44. D. Ullmo, T. Nagano, S. Tomsovic, Phys. Rev. Lett. 90, 176801 (2003)

    Article  ADS  Google Scholar 

  45. H. Jiang, H.U. Baranger, W. Yang, Phys. Rev. Lett. 90, 026806 (2003)

    Article  ADS  Google Scholar 

  46. A. Ghosal, C.J. Umrigar, H. Jiang, D. Ullmo, H.U. Baranger, Phys. Rev. B 71, 241306 (2005)

    Article  ADS  Google Scholar 

  47. V. Cěrný, J. Opt. Theory Appl. 45, 42 (1985)

    Google Scholar 

  48. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  49. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 4598 (1983)

    Article  MathSciNet  Google Scholar 

  50. M.A. Bates, D. Frenkel, Phys. Rev. E 61, 5223 (2000)

    Article  ADS  Google Scholar 

  51. E. Tosatti, in The Structure of Surface II, edited by J.F. vander Veen, M.A.V. Howe (Springer, Berlin, 1988), pp. 535-544

  52. J.G. Dash, Contemp. Phys. 30, 89 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  53. V.J. Goldman, M. Santos, M. Shayegan, J.E. Cunningham Phys. Rev. Lett. 65, 2189 (1990)

    Article  ADS  Google Scholar 

  54. B. Spivak, S. Kivelson, J. Phys. IV 131, 255 (2006)

    Google Scholar 

  55. F.A. Lindemann, Z. Phys. 11, 609 (1910)

    MATH  Google Scholar 

  56. L. Landau, E. Lifshitz, Statistical Physics (MA: Addison-Wesley, Reading, 1969)

  57. J. Böning, A. Filinov, P. Ludwig, H. Baumgartner, M. Bonitz, Yu.E. Lozovik, Phys. Rev. Lett. 100, 113401 (2008)

    Article  ADS  Google Scholar 

  58. A. Filinov, J. Böning, M. Bonitz, Yu.E. Lozovik, Phys. Rev. B 77, 214527 (2008)

    Article  ADS  Google Scholar 

  59. V.M. Bedanov, G.V. Gadiyak, Yu.E. Lozovik, Phys. Lett. 109A, 289 (1985)

    Article  ADS  Google Scholar 

  60. V.M. Bedanov, G.V. Gadiyak, Yu.E. Lozovik, IEEE Trans. Plasma Sci. 35, 332 (2007)

    Article  Google Scholar 

  61. P. Hartmann, Z. Donkö, P.M. Bakshi, G.J. Kalman, S. Kyrkos, IEEE Trans. Plasma Sci. 35, 332 (2007)

    Article  ADS  Google Scholar 

  62. E.L. Cussler, Diffusion: Mass Transfer in Fluid Sphere, 3rd edn. (Cambridge University Press, Cambridge, 2009)

  63. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  64. T. Ott, M. Stanley, M. Bonitz, Phys. Plasmas 18, 063701 (2011)

    Article  ADS  Google Scholar 

  65. R.A. Quinn, C. Cui, J. Goree, B. Pieper, H. Thomas, G.E. Morfill, Phys. Rev. E 53, R2049 (1996)

    Article  ADS  Google Scholar 

  66. E. Yurtsever, F. Calvo, Molecular Physics 106, 289 (2008)

    Article  ADS  Google Scholar 

  67. R. Klein, Computational Geometry and its Applications 333, 148 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Ghosal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, D., Ghosal, A. Melting of Coulomb-interacting classical particles in 2D irregular traps. Eur. Phys. J. B 86, 499 (2013). https://doi.org/10.1140/epjb/e2013-40568-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40568-2

Keywords

Navigation