Skip to main content
Log in

Interplay between Coulomb interaction and quantum-confined Stark-effect in polar and nonpolar wurtzite InN/GaN quantum dots

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we systematically analyze the electronic structures of polar and nonpolar wurtzite-InN/GaN quantum dots and their modification due to the quantum-confined Stark effect caused by intrinsic fields. This is achieved by combining continuum elasticity theory with an effective-bond orbital model to describe the elastic and single-particle electronic properties in these nitride systems. Based on these results, a many-body treatment is used to determine optical absorption spectra. The efficiency of optical transitions depends on the interplay between the Coulomb interaction and the quantum-confined Stark effect. We introduce an effective confinement potential which represents the electronic structure under the influence of the intrinsic polarization fields and calculate the needed strength of Coulomb interaction to diminish the separation of electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Marquardt, T. Hickel, J. Neugebauer, J. Appl. Phys. 106, 083707 (2009)

    Article  ADS  Google Scholar 

  2. X. Yang, M. Arita, S. Kako, Y. Arakawa, Appl. Phys. Lett. 99, 061914 (2011)

    Article  Google Scholar 

  3. C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P. Persans, L. Liu, E. Preble, D. Hanser, J. Cryst. Growth 310, 3987 (2008)

    Article  ADS  Google Scholar 

  4. S. Founta, F. Rol, E. Bellet-Amalric, J. Bleuse, B. Daudin, B. Gayral, H. Mariette, C. Moisson, Appl. Phys. Lett. 86, 171901 (2005)

    Article  ADS  Google Scholar 

  5. S. Nakamura, Science 281, 956 (1998)

    Article  Google Scholar 

  6. S. Schulz, A. Berube, E.P. O’Reilly, Phys. Rev. B 79, 081401 (2009)

    Article  ADS  Google Scholar 

  7. S. Schulz, E.P. O’Reilly, Phys. Stat. Sol. C 7, 80 (2010)

    Article  Google Scholar 

  8. K. Schuh, S. Barthel, O. Marquardt, T. Hickel, J. Neugebauer, G. Czycholl, F. Jahnke, Appl. Phys. Lett. 100, 092103 (2012)

    Article  ADS  Google Scholar 

  9. S. Schulz, M.A. Caro, E.P. O’Reilly, Appl. Phys. Lett. 101, 113107 (2012)

    Article  ADS  Google Scholar 

  10. A. Rosenauer et al., Ultramicroscopy 111, 1316 (2011)

    Article  Google Scholar 

  11. C. Tessarek, S. Figge, T. Aschenbrenner, S. Bley, A. Rosenauer, M. Seyfried, J. Kalden, K. Sebald, J. Gutowski, D. Hommel, Phys. Rev. B 83, 115316 (2011)

    Article  ADS  Google Scholar 

  12. K. Sebald, J. Kalden, H. Lohmeyer, J. Gutowski, Phys. Stat. Sol. B 248, 1777 (2011)

    Article  Google Scholar 

  13. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  14. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  MATH  ADS  Google Scholar 

  15. J.P. Loehr, Phys. Rev. B 50, 5429 (1994)

    Article  ADS  Google Scholar 

  16. R. Santoprete, B. Koiller, R.B. Capaz, P. Kratzer, Q.K.K. Liu, M. Scheffler, Phys. Rev. B 68, 235311 (2003)

    Article  ADS  Google Scholar 

  17. S. Schulz, G. Czycholl, Phys. Rev. B 72, 165317 (2005)

    Article  ADS  Google Scholar 

  18. M. Korkusinski, P. Hawrylak, M. Zielinski, W. Sheng, G. Klimeck, Microelectronics J 39, 318 (2008)

    Article  Google Scholar 

  19. X. Cartoixà, D.Z.Y. Ting, T.C. McGill, Phys. Rev. B 68, 235319 (2003)

    Article  ADS  Google Scholar 

  20. D. Mourad, S. Barthel, G. Czycholl, Phys. Rev. B 81, 165316 (2010)

    Article  ADS  Google Scholar 

  21. P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt, M. Scheffler, New J. Phys. 7, 126 (2005)

    Article  ADS  Google Scholar 

  22. P. Rinke, M. Scheffler, A. Qteish, M. Winkelnkemper, D. Bimberg, J. Neugebauer, Appl. Phys. Lett. 89, 161919 (2006)

    Article  ADS  Google Scholar 

  23. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008)

    Article  ADS  Google Scholar 

  24. Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, M. Scheffler, C.G. Van de Walle, Semicond. Sci. Technol. 26, 014037 (2011)

    Article  ADS  Google Scholar 

  25. L.W. Wang, A. Zunger, J. Chem. Phys. 100, 2394 (1994)

    Article  ADS  Google Scholar 

  26. O. Marquardt, S. Boeck, C. Freysoldt, T. Hickel, J. Neugebauer, Comput. Phys. Commun. 181, 765 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. B. Jogai, J. Appl. Phys. 88, 5050 (2000)

    Article  ADS  Google Scholar 

  28. M. Willatzen, B. Lassen, L.C.L.Y. Voon, R.V.N. Melnik, J. Appl. Phys. 100, 024302 (2006)

    Article  ADS  Google Scholar 

  29. U.M.E. Christmas, A.D. Andreev, D.A. Faux, J. Appl. Phys. 98, 073522 (2005)

    Article  ADS  Google Scholar 

  30. A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 79, 075443 (2009)

    Article  ADS  Google Scholar 

  31. S. Froyen, W.A. Harrison, Phys. Rev. B 20, 2420 (1979)

    Article  ADS  Google Scholar 

  32. M. Winkelnkemper, A. Schliwa, D. Bimberg, Phys. Rev. B 74, 155322 (2006)

    Article  ADS  Google Scholar 

  33. S. Schulz, D. Mourad, G. Czycholl, Phys. Rev. B 80, 165405 (2009)

    Article  ADS  Google Scholar 

  34. A. Franceschetti, H. Fu, L.W. Wang, A. Zunger, Phys. Rev. B 60, 1819 (1999)

    Article  ADS  Google Scholar 

  35. P. Vogl, H.P. Hjalmarson, J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983)

    Article  ADS  Google Scholar 

  36. J.M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)

    Article  ADS  Google Scholar 

  37. M. Korkusinski, M. Zielinski, P. Hawrylak, J. Appl. Phys. 105, 122406 (2009)

    Article  ADS  Google Scholar 

  38. P.N. Keating, Phys. Rev. 145, 637 (1966)

    Article  ADS  Google Scholar 

  39. C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, A. Zunger, J. Appl. Phys. 83, 2548 (1998)

    Article  ADS  Google Scholar 

  40. K. Müller, M. Schowalter, A. Rosenauer, O. Rubel, K. Volz, Phys. Rev. B 81, 075315 (2010)

    Article  ADS  Google Scholar 

  41. Y.Z. Hu, M. Lindberg, S.W. Koch, Phys. Rev. B 42, 1713 (1990)

    Article  ADS  Google Scholar 

  42. S. Schulz, S. Schumacher, G. Czycholl, Phys. Rev. B 73, 245327 (2006)

    Article  ADS  Google Scholar 

  43. M. Braskén, M. Lindberg, D. Sundholm, J. Olsen, Phys. Rev. B 61, 7652 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Barthel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, S., Schuh, K., Marquardt, O. et al. Interplay between Coulomb interaction and quantum-confined Stark-effect in polar and nonpolar wurtzite InN/GaN quantum dots. Eur. Phys. J. B 86, 449 (2013). https://doi.org/10.1140/epjb/e2013-40542-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40542-0

Keywords

Navigation