Chemical and physical insight on the local properties of the phosphides XSiP2 (X = Be, Mg, Cd, Zn and Hg) under pressure: from first principles calculations

  • Tarik Ouahrani
Regular Article


Local properties of the XSiP2 (X = Be, Mg, Cd, Zn and Hg) compounds are revisited through the partition of static thermodynamic properties under pressure. We pay attention to the metallization that occurs when the investigated compounds undergo a phase transition from chalcopyrite to the NaCl structure. Electron localization function analysis shows that the local valence basin attractors values decrease as a function of pressure. As the pressure increases, the tetragonal distortion (c/a) diminishes while the degree of ionicity enhances. In addition, by means of atom in molecule approach, atomic-like local compressibility and pressures are analyzed. We found that the basins volumes of the investigated compounds in the NaCl phase have lower compressibilities than those in the chalcopyrite phase. According to the predicted core-valence basins, the phosphorus cation is found to be the more affected by the hydrostatic pressure.


Solid State and Materials 


  1. 1.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)Google Scholar
  2. 2.
    A. Martín Pendás, A. Costales, M.A. Blanco, J.M. Recio, V. Luaña, Phys. Rev. B 62, 13970 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J. Contreras-García, A. Martín Pendás, B. Silvi, J.M. Recio, J. Theor. Chem. Compd. 113, 1068 (2009)Google Scholar
  4. 4.
    A.I. Baranov, M. Kohout, J. Phys. Chem. Solids 71, 1350 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    T. Ouahrani, I. Merad-Boudia, H. Baltache, R. Khenata, Z. Bentalha, Phys. Scr. 86, 025706 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Otero-de-la-Roza, V. Luańa, J. Chem. Theor. Comput. 6, 3761 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Taravillo, E. del Corro, J. Contreras-García, A. Martín Pendás, M. Flórez, J.M. Recio, V.G. Baonza, High Press. Res. 29, 97 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Yu, D.R. Trinkle, R.M. Martin, Phys. Rev. B 83, 115113 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ouahrani, J.M. Menendez, M. Marqués, J. Contreras-García, V.G. Baonza, J.M. Recio, Europhys. Lett. 98, 56002 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J. Contreras-García, P. Mori-Sánchez, B. Silvi, J.M. Recio, J. Chem. Theor. Comput. 5, 2108 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Marquéss, G.J. Ackland, L.F. Lundegaard, J. Contreras-García, M.I. McMahon, Phys. Rev. Lett. 103, 115501 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Aynyas, S.P. Sanyal, P.K. Jha, Phys. Stat. Sol. b 229, 1459 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    S. Cui, W. Feng, H. Hu, Z. Feng, H. Liu, Solid State Commun. 149, 996 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    D. Varshney, N. Kaurav, R. Kinge, S. Shah, R.K. Singh, High Press. Res. 25, 145 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Beister, S. Ves, W. Hönle, K. Syassen, G. Kühn, Phys. Rev. B 43, 9635 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    M. Díaz, L.M. de Chalbaud, V. Sagredo, T. Tinoco, C. Pineda, Phys. Stat. Sol. b 220, 281 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Mori, S.-I. Iwamoto, K.-I. Takarabe, S. Minomura, A.L. Ruoff, Phys. Stat. Sol. b 211, 469 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    L.M. de Chalbaud, M. Díaz de Sihues, Rev. Mex. Fis. 53, 307309 (2007)Google Scholar
  19. 19.
    A. Krivosheeva, in Proceedings of the Frontiers of Nanoscale Spintronics and Photovoltaics seminar, Marseille 2009 (unpublished)Google Scholar
  20. 20.
    S.C. Erwin, I. Zuti, Nat. Mater. 3, 410 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, F. Arnaud d’Avitaya, Phys. Rev. B 85, 205201 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. Deus, H.A. Sciineid, Phys. Stat. Sol. a 79, 411 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    R.T. Trykozko, Mat. Res. Bull. 10, 489 (1975)CrossRefGoogle Scholar
  24. 24.
    H.-S. Shen, G.Q. Yao, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem. 71, 176 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    A.G. Petukhov, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 49, 4549 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    A. Zunger, Appl. Phys. Lett. 50, 164 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, R. Armiento, A. Chizmeshya, P. Anderson, I. Nekrasov, F. Wagner, F. Kalarasse, J. Spitaler, S. Pittalis, N. Lathiotakis, T. Burnus, S. Sagmeister, C. Meisenbichler, S. Lebegue, Y. Zhang, F. Kormann, A. Baranov, A. Kozhevnikov, S. Suehara, F. Essenberger, A. Sanna, T. McQueen, T. Baldsiefen, M. Blaber, A. Filanovich, T. Bjorkman, Elk FP-LAPW code,
  29. 29.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)Google Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    A. Otero-de-la-Roza, M.A. Blanco, A. Martín Pendás, V. Luańa, Comput. Phys. Commun. 180, 157 (2009)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    B. Silvi, A. Savin, Nature 371, 683 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    A. Otero-de-la Roza, V. Luaña, Phys. Rev. B 84, 184103 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Otero-de-la Roza, V. Luaña, Phys. Rev. B 84, 024109 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 52, 5607 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    J.L. Shay, J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon Press, Oxford, 1974)Google Scholar
  39. 39.
    F. Arab, F.A. Sahraoui, K. Haddadi, L. Louail, Comput. Mater. Sci. 65, 520 (2012)CrossRefGoogle Scholar
  40. 40.
    J.C. Phillips, Phys. Rev. Lett. 27, 1197 (1971)ADSCrossRefGoogle Scholar
  41. 41.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Comput. Phys. Commun. 183, 2272 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    C.H.L. Goodman, Semicond. Sci. Technol. 6, 725 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    A. MacKinnon, in Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Börnstein New Series, Pt. h (Springer, Berlin, 1985), Vol. 17, p. 9Google Scholar
  45. 45.
    L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, X. Wang, J. Cryst. Growth 364, 62 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    F. Chiker, Z. Kebbab, R. Miloua, N. Benramdane, Solid State Commun. 151, 1568 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    A.V. Krivosheeva, V.L. Shaposhnikov, B.E. Borisenko, F. Arnauld D’avitaya, J.-L. Lazzari, in Proceedings de la Conférence Internationale sur les Nano-Matériaux et les Energies Renouvelables, ICNMRE, July 5-9 2010, Safi-Morocco Google Scholar
  49. 49.
    C. Kittel, Quantum Theory of Solids (John Wiley and Sons, New York, 1963)Google Scholar
  50. 50.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Fort Worth, 1976)Google Scholar
  51. 51.
    Z. Sun, J. Zhou, Ho.-K. Mao, R. Ahuja, Proc. Natl. Acad. Sci. 109, 5948 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    M. Kohout, F. Wagner, Y. Grin, Theor. Chem. Acc. 108, 150 (2002)CrossRefGoogle Scholar
  53. 53.
    B. Silvi, C. Gatti, J. Phys. Chem. A 104, 947 (2000)CrossRefGoogle Scholar
  54. 54.
    T. Bovornratanaraks, V. Saengsuwan, K. Yoodee, M.I. McMahon, C. Hejny, D. Ruffolo, J. Phys.: Condens. Matter 22, 355801 (2010)CrossRefGoogle Scholar
  55. 55.
    H.-T. Xue, F.-L. Tang, W.-J. Lu, Y.-D. Feng, Z.-M. Wang, Y. Wang, Comput. Mater. Sci. 67, 21 (2013)CrossRefGoogle Scholar
  56. 56.
    P. Pluengphon, T. Bovornratanaraks, S. Vannarat, K. Yoodee, D. Ruffolo, U. Pinsook, Sol. Stat. Commun. 152, 775 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    P. Mori-Sánchez, A. Martín Pendás, V. Luaña J. Am. Chem. Soc. 124, 14721 (2002)CrossRefGoogle Scholar
  58. 58.
    T. Ouahrani, A. Otero-de-la-Roza, A.H. Reshak, R. Khenata, H.I. Faraoun, B. Amrani, M. Mebrouki, V. Luaña, Physica B 405, 3658 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    I. Merad-Boudia, A.H. Reshak, T. Ouahrani, J. Appl. Phys. 113, 083505 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    J. Hernández-Trujillo, R.F.W. Bader, J. Phys. Chem. A 104, 1779 (2000)CrossRefGoogle Scholar
  61. 61.
    F. Bachhuber, J. Rothballer, F. Pielnhofer, R. Weihrich, J. Chem. Phys. 135, 124508 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    S.F. Matar, R. Weihrich, D. Kurowski, A. Pfitzner, Solid State Sci. 6, 15 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    A. Martín Pendás, A. Costales, M.A. Blanco, J.M. Recio, V. Luaña, Phys. Rev. B 62, 13970 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    J. Gilman, Electronic Basis of the Strength of Materials (Cambridge University Press, Cambridge, 2003), pp. 110–141Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueUniversité de TlemcenTlemcenAlgeria
  2. 2.École Préparatoire en Sciences et TechniquesTlemcenAlgeria

Personalised recommendations