Skip to main content
Log in

Thermal rectification and thermal resistive phase cross over in exponential mass graded materials

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Concept of the functional graded materials (FGMs) has been explored by considering exponential mass variation along the chain of anharmonic oscillators in the study of heat transport at low dimensions. This exponential distribution of mass along the space invokes the diffusion of phonons transport which results to temperature gradient, asymmetric heat flow, thermal rectification and cross over between positive differential thermal resistance (PDTR) and negative differential thermal resistance (NDTR) in one-dimensional (1D) exponential mass graded chain. The temperature dependence thermal rectification achieved is 4−74% and also predicted that the thermal rectification can be controlled by tuning the higher and lower average temperature limits of two thermal reservoirs. It is also seen that in FGMs, the thermal conductivity does not change drastically against the average temperature of two heat baths. The cross over between PDTR and NDTR can be tuned either by mass ratio of one dimensional (1D) exponential mass graded anharmonic chain and/or by temperature difference between two heat baths. The figure of merit of the 1D structure can also be tuned by mass gradient, the higher mass gradient material will work as the potential candidate for better thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094320 (2002)

    Article  ADS  Google Scholar 

  2. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  3. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  5. J. Wang, E. Pereira, G. Casati, Phys. Rev. E 86, 010101 (R) (2012)

    Article  ADS  Google Scholar 

  6. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  7. S. Liu, X. Xu, R. Xie, G. Zhang, B. Li, arXiv:1205.3065v2 [cond-mat.stat-mech] (2012)

  8. P. Emmanuel, Phys. Rev. E 82, 040101(R) (2010)

    Google Scholar 

  9. R. Scheibner, M. König, D. Reuter, A.D. Wieck, C. Gould, H. Buhman, L.W. Molenkamp, New J. Phys. 10, 083016 (2008)

    Article  ADS  Google Scholar 

  10. O.-P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)

    Article  ADS  Google Scholar 

  11. N. Yang, N. Li, L. Wang, B. Li, Phys. Rev. B 76, 020301 (R) (2007)

    Article  ADS  Google Scholar 

  12. C.W. Chang, D. Okawa, A. Majmumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  13. B. Hu, L. Yang, Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006)

    Article  ADS  Google Scholar 

  14. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  15. T.N. Shah, P.N. Gajjar, Phys. Lett. A 376, 438 (2012)

    Article  ADS  MATH  Google Scholar 

  16. T.N. Shah, P.N. Gajjar, Commun. Theor. Phys. 59, 361 (2013)

    Article  MATH  Google Scholar 

  17. R. Venkatasubramnian, E. Siivola, T. Colpitts, B. O'Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  18. D. He, B. Sahin, H. Bhambi, Phys. Rev B 80, 104302 (2009)

    Article  ADS  Google Scholar 

  19. D. He, B. Sahin, H. Bhambi, Phys. Rev. E 78, 061103 (2008)

    Article  ADS  Google Scholar 

  20. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  21. W. Gang, B. Li, Phys. Rev. B 76, 085424 (2007)

    Article  ADS  Google Scholar 

  22. W. Gang, B. Li, J. Phys.: Condens. Matter 20, 175211 (2008)

    ADS  Google Scholar 

  23. B. Hu, D. He, L. Yang, Y. Zhang, Phys. Rev. E 74, 060101 (2006) (R)

    Article  ADS  Google Scholar 

  24. W. Lei, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  25. Z.-G. Shao, L. Yang, H.-K. Chan, B. Hu, Phys. Rev. E 79, 061119 (2009)

    Article  ADS  Google Scholar 

  26. W.-R. Zhong, P. Yang, B.-Q. Ai, Z.-G. Shao, B. Hu, Phys. Rev. E 79, 050103 (R) (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.N. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, T., Gajjar, P. Thermal rectification and thermal resistive phase cross over in exponential mass graded materials. Eur. Phys. J. B 86, 497 (2013). https://doi.org/10.1140/epjb/e2013-40225-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40225-x

Keywords

Navigation