The decentralized flow structure of clickstreams on the web

Regular Article

Abstract

The browsing behavior of massive web users forms a flow network transporting user’ collective attention between websites. By analyzing the circulation of the collective attention we discover the scaling relationship between the impact of sites and their traffic. We construct three clickstreams networks, whose nodes were websites and edges were formed by the users’ switching between sites. The impact of site i, Ci, is measured by the clickstreams controlled by this site in the circulation of clickstreams. We find that Ci scales sublinearly with Ai, the traffic of site i. Specifically, there existed a relationship Ci ~ Aiγ(γ < 1), which implies the decentralized structure of the clickstream circulation.

Keywords

Statistical and Nonlinear Physics 

Supplementary material

References

  1. 1.
    D. Watts, S. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    A. Broder et al., Computer networks 33, 309 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J. Kleinberg, S. Lawrence, Science 294, 1849 (2001) CrossRefGoogle Scholar
  4. 4.
    J. Kleinberg et al., Nature 406, 845 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/422/
  6. 6.
    M. Meiss, B. Gonçalves, J. Ramasco, A. Flammini, F. Menczer, in Proceedings of the 21st ACM conference on Hypertext and hypermedia, ACM, 2010, pp. 229–234Google Scholar
  7. 7.
    F. Qiu, Z. Liu, J. Cho, in Proceedings International Workshop on the Web and Databases (WebDB), Citeseer 2005, pp. 103–108Google Scholar
  8. 8.
    A. Chmiel, K. Kowalska, J. Hołyst, Phys. Rev. E 80, 066122 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    R. White, J. Huang, in Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM 2010, pp. 587–594Google Scholar
  10. 10.
    M. Meiss, F. Menczer, S. Fortunato, A. Flammini, A. Vespignani, in Proceedings of the international conference on Web search and web data mining, ACM, 2008, pp. 65–76Google Scholar
  11. 11.
    B.A. Huberman, P. Pirolli, J. Pitkow, R. Lukose, Science 280, 95 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    J. Bollen et al., PLoS One 4, e4803 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    A. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J. Cho, S. Roy, in Proceedings of the 13th international conference on World Wide Web, ACM, 2004, pp. 20–29 Google Scholar
  15. 15.
    L. Introna, H. Nissenbaum, Computer 33, 54 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Fortunato, A. Flammini, F. Menczer, A. Vespignani, Proc. Natl. Acad. Sci. 103, 12684 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    J. Brainerd, B. Becker, in Proceedings of the IEEE Symposium on Information Visualization, 2001 (INFOVIS’01), IEEE Computer Society, p. 153Google Scholar
  18. 18.
    G. Funkhouser, M. McCombs, The Public Opinion Quarterly 35, 107 (1971)CrossRefGoogle Scholar
  19. 19.
    K. Lerman, R. Ghosh, in Proceedings of 4th International Conference on Weblogs and Social Media (ICWSM), 2010 Google Scholar
  20. 20.
    F. Wu, B.A. Huberman, Proc. Natl. Acad. Sci. 104, 17599 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    C. Cattuto, A. Barrat, A. Baldassarri, G. Schehr, V. Loreto, Proc. Natl. Acad. Sci. 106, 10511 (2009) Google Scholar
  22. 22.
    F. Wu, D. Wilkinson, B. Huberman, in Computational Science and Engineering, 2009. CSE’09. International Conference on IEEE, 4, 409 (2009)Google Scholar
  23. 23.
    N. Foti, J. Hughes, D. Rockmore, PloS One 6, e16431 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    T. Fruchterman, E. Reingold, Software: Practice and experience 21, 1129 (1991) CrossRefGoogle Scholar
  25. 25.
    J. Zhang, L. Guo, J. Theor. Biol. 264, 760 (2010) CrossRefGoogle Scholar
  26. 26.
    M. Barber, Ecological Modelling 5, 193 (1978)CrossRefGoogle Scholar
  27. 27.
    M. Higashi, Ecological Modelling 32, 137 (1986)CrossRefGoogle Scholar
  28. 28.
    D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423, 165 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    D. Warton, I. Wright, D. Falster, M. Westoby, Biol. Rev. 81, 259 (2006)CrossRefGoogle Scholar
  30. 30.
    P. Pirolli, Information foraging theory: Adaptive interaction with information (Oxford University Press, New York, 2007), Vol. 2Google Scholar
  31. 31.
    M. Higashi, B. Patten, T. Burns, Ecological modelling 66, 1 (1993)CrossRefGoogle Scholar
  32. 32.
    S. Vitali, J. Glattfelder, S. Battiston, PloS One 6, e25995 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    N. Smirnov, Annal. Math. Stat. 19, 279 (1948)MATHCrossRefGoogle Scholar
  34. 34.
    A. Clauset, C. Shalizi, M. Newman, Soc. Ind. Appl. Math. Rev. 51, 661 (2009)MathSciNetMATHGoogle Scholar
  35. 35.
    D. Rosen, E. Purinton, J. Business Res. 57, 787 (2004)CrossRefGoogle Scholar
  36. 36.
    G. Tan, K. Wei, Electron. Commerce Res. Appl. 5, 261 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Media and CommunicationCity University of Hong KongHong KongP.R. China
  2. 2.School of Management, Beijing Normal UniversityBeijingP.R. China

Personalised recommendations