Skip to main content
Log in

Vortex motion in superfluid 4He: effects of normal fluid flow

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The motion of a vortex filament in superfluid 4He is considered by using the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) [H.E. Hall, W.F. Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956); H.E. Hall, W.F. Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956); I.L. Bekarevich, I.M. Khalatnikov, Sov. Phys. J. Exp. Theor. Phys. 13, 643 (1961)] phenomenological model for the scattering process between the vortex and thermal excitations in liquid 4He. The HVBK equations are analytically formulated first in the intrinsic geometric parameter space to obtain insights into the physical implications of the friction terms, associated with the friction coefficients α and α′ (in the Hall-Vinen notation) as well as the previous neglect of the friction term associated with the friction coefficient α′. The normal fluid velocity components both along and transverse to the vortex filament are included. This analytical development also serves to highlight the difficulties arising in making further progress on this route. A reformulation of the HVBK equation in the extrinsic vortex filament coordinate space is then given which is known [B.K. Shivamoggi, Phys. Rev. B 84, 012506 (2011)] to provide a useful alternative analytical approach in this regard. A nonlinear Schrödinger equation for the propagation of nonlinear Kelvin waves on a vortex filament in a superfluid is given taking into account the generalized normal fluid flow. The friction term associated with α′, even in the presence of the normal fluid velocity components transverse to the vortex filament, is shown to produce merely an algebraic growth of the Kelvin waves hence providing further justification for the neglect of this term. On the other hand, the instability produced by the friction term associated with α via the normal fluid velocity component along the vortex filament is shown to manifest itself as a parametric amplification on considering the problem of a rotating planar vortex filament in a superfluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, J. Phys. 5, 71 (1941)

    Google Scholar 

  2. L. Onsager, in Proceeding of the International Conference on Theoretical Physics, Kyoto and Tokyo, 1953, p. 877

  3. W.F. Vinen, Proc. Roy. Soc. Lond. A 260, 218 (1961)

    Article  ADS  Google Scholar 

  4. G.W. Rayfield, F. Reif, Phys. Rev. Lett. 11, 305 (1963)

    Article  ADS  Google Scholar 

  5. C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

  6. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  7. R.P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955)

    Article  Google Scholar 

  8. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991), p. 86

  9. H.E. Hall, W.F. Vinen, Proc. Roy. Soc. Lond. A 238, 204 (1956)

    Article  ADS  Google Scholar 

  10. H.E. Hall, W.F. Vinen, Proc. Roy. Soc. Lond. A 238, 215 (1956)

    Article  ADS  MATH  Google Scholar 

  11. W.F. Vinen, in Quantum Fluids, edited by D.F. Brewer (North-Holland Pub., Amsterdam, 1966), p. 74

  12. M.S. Paoletti, M.E. Fisher, D.P. Lathrop, Physica D 239, 1367 (2010)

    Article  ADS  MATH  Google Scholar 

  13. B.V. Svistunov, Phys. Rev. B 52, 3647 (1995)

    Article  ADS  Google Scholar 

  14. K.W. Schwarz, Phys. Rev. B 31, 5782 (1985)

    Article  ADS  Google Scholar 

  15. K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)

    Article  ADS  Google Scholar 

  16. L.S. Da Rios, Rend. Circ. Mat. Palermo 22, 117 (1906)

    Article  MATH  Google Scholar 

  17. R.J. Arms, F.R. Hama, Phys. Fluids 8, 553 (1965)

    Article  ADS  Google Scholar 

  18. R. Betchov, J. Fluid Mech. 22, 471 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. H. Hasimoto, J. Fluid Mech. 51, 477 (1972)

    Article  ADS  MATH  Google Scholar 

  20. V.E. Zakharov, A.B. Shabat, Sov. Phys. J. Exp. Theor. Phys. 34, 62 (1972)

    MathSciNet  ADS  Google Scholar 

  21. I.L. Bekarevich, I.M. Khalatnikov, Sov. Phys. J. Exp. Theor. Phys. 13, 643 (1961)

    Google Scholar 

  22. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  ADS  Google Scholar 

  23. B.K. Shivamoggi, Phys. Rev. B 84, 012506 (2011)

    Article  ADS  Google Scholar 

  24. L.M. Pismen, Vortices in Nonlinear Fields (Clarendon Press, Oxford, 1999), p. 166

  25. E.A. Kuznetsov, V.P. Ruban, Phys. Rev. E 61, 831 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  26. V.P. Dmitreyev, Am. J. Phys. 73, 563 (2005)

    Article  ADS  Google Scholar 

  27. B.K. Shivamoggi, G.J.F. van Heijst, Phys. Lett. A 374, 1742 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974), Chap. 17

  29. D.K. Cheng, M.W. Cromar, R.J. Donnelly, Phys. Rev. Lett. 31, 433 (1973)

    Article  ADS  Google Scholar 

  30. W.I. Glaberson, W.W. Johnson, R.M. Ostermeier, Phys. Rev. Lett. 33, 1179 (1974)

    Article  ADS  Google Scholar 

  31. H. Hasimoto, J. Phys. Soc. Jpn 31, 293 (1971)

    Article  ADS  Google Scholar 

  32. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Cambridge University Press, Cambridge, 1927), p. 401

  33. Y. Sato, A. Joshi, R. Packard, Phys. Rev. B 76, 052505 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhimsen K. Shivamoggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivamoggi, B. Vortex motion in superfluid 4He: effects of normal fluid flow. Eur. Phys. J. B 86, 275 (2013). https://doi.org/10.1140/epjb/e2013-40099-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40099-x

Keywords

Navigation