Skip to main content
Log in

Degenerate parametric decay and second harmonic generation of quasistatic surface defect-deformational waves and bimodal nanoparticle size distributions

Nonlinear wave theory of the formation of nanoparticle ensembles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The defect-deformational (DD) theory of cooperative nucleation of ordered ensembles of nano-particles on the isotropic surface of solids with the participation of quasi-static Rayleigh waves (SRW) is developed. It is shown that the deposited atoms (surface defects) couple with the SRW to form quasi-static defect-deformation (DD) waves (gratings). Their wavenumbers form the fundamental DD wave excitation band. Nonlinear (three wave) interactions of the DD gratings within this band lead to the formation of the latent periodic DD structure which serves as a template for the subsequent growth of an ensemble of nanoparticles. Using a previously developed method, the size distribution function for this ensemble is calculated. The processes of degenerate parametric decay (DPD) and second harmonic generation (SHG) of DD waves are considered for the first time. The DPD of the spatial harmonics in the fundamental band is shown to lead to the formation of a bimodal nanoparticle size distribution function with maxima located at two values of nanoparticle size with ratio 1:2. Similarly, the SHG of DD waves from the fundamental band leads to the formation of bimodal nanoparticle size distribution. The obtained theoretical results are used for the interpretation of the experimental results on quasi-hexagonal bimodal nanoparticle ensembles formed under laser-assisted atoms deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. MacDonald, V.A. Fedotov, S. Pochon, K.J. Ross, G.C. Stevens, N.I. Zheludev, W.S. Brocklesby, V.I. Emel’yanov, Appl. Phys. Lett. 80, 1643 (2002)

    Article  ADS  Google Scholar 

  2. A.I. Denisyuk, K.F. MacDonald, F. Abajo, N.I. Zheludev, Jpn J. Appl. Phys. 48, 03A065 (2009)

    Article  Google Scholar 

  3. H. Kissel, U. Müller, C. Walther, W.T. Masselink, Yu.I. Mazur, G.G. Tarasov, M.P. Lisitsa, Phys. Rev. B 62, 7213 (2000)

    Article  ADS  Google Scholar 

  4. M.S. Hegazy, H.E. Elsayed-Ali, J. Appl. Phys. 104, 124302 (2008)

    Article  ADS  Google Scholar 

  5. V.I. Emel’yanov, A.I. Mikaberidze, Phys. Rev. B 72, 235407 (2005)

    Article  ADS  Google Scholar 

  6. V.I. Emel’yanov, in Progress in Nanothechnology, edited by Z. Bartul, J. Trenor (Nova Science Publ., 2012), Vol. 10, Chap. 1, pp. 1–59

  7. V.I. Emel’yanov, Quantum Electron. 36, 489 (2006)

    Article  ADS  Google Scholar 

  8. I.A. Kunin, Theory of Elastic Media with Microstructure(Springer, Berlin, Heidelberg, New York, 1982)

  9. R.C. Picu, J. Mech. Phys. Solids 50, 1923 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986)

  11. J. Miklowitz, The theory of elastic waves and waveguides (North-Holland, Amsterdam, New York, Oxford, 1978)

  12. Y.R. Shen, Principles of Nonlinear Optics (John Wiley & Sons Inc., Hoboken, 2003)

  13. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984)

  14. G.I. Sivashinsky, Ann. Rev. Fluid Mech. 15, 179 (1983)

    Article  ADS  Google Scholar 

  15. V.I. Emel’yanov, A.S. Kuratov (to be published)

  16. V.I. Emel’yanov, K.I. Eremin, N.I. Zheludev, J. Exp. Theor. Phys. Lett. 76, 123 (2002)

    Google Scholar 

  17. M.J. Aziz, Defect and Diffusion Forum 153, 1 (1998)

    Article  Google Scholar 

  18. H. Lee, R. Lowe-Webb, T.J. Johnson, W. Yang, P.C. Sercel, Appl. Phys. Lett. 73, 3556 (1998)

    Article  ADS  Google Scholar 

  19. V.I. Emel’yanov, in Laser ablation in liquids, Principles and applications in the preparation of nanomaterials, edited by G. Yang (Pan Stanford Publ., Singapore, 2012), Chap. 1, pp. 1–109

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.I. Emel’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emel’yanov, V., Kuratov, A. Degenerate parametric decay and second harmonic generation of quasistatic surface defect-deformational waves and bimodal nanoparticle size distributions. Eur. Phys. J. B 86, 270 (2013). https://doi.org/10.1140/epjb/e2013-40048-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40048-9

Keywords

Navigation