Minority persistence in agent based model using information and emotional arousal as control variables

Regular Article

Abstract

We present detailed analysis of the behavior of an agent based model of opinion formation, using a discrete variant of cusp catastrophe behavior of single agents. The agent opinion about a particular issue is determined by its information about the issue and its emotional arousal. It is possible that for agitated agents the same information would lead to different opinions. This results in a nontrivial individual opinion dynamics. The agents communicate via messages, which allows direct application of the model to ICT based communities. We study the dependence of the composition of an agent society on the range of interactions and the rate of emotional arousal. Despite the minimal number of adjustable parameters, the model reproduces several phenomena observed in real societies, for example nearly perfectly balanced results of some highly contested elections or the fact that minorities seldom perceive themselves to be a minority.

Keywords

Statistical and Nonlinear Physics 

Supplementary material

10051_2013_9942_MOESM1_ESM.pdf (2.1 mb)
Supplementary material, approximately 2.14 MB.

References

  1. 1.
    J.T. Cox, D. Griffeath, Ann. Prob. 14, 347 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    E. Ben-Naim, L. Frachebourg, P.L. Krapivsky, Phys. Rev. E 53, 3078 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Galam, B. Chopard, M. Droz, Physica A 314, 256 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    C. Castellano, D. Vilone, A. Vespignani, Europhys. Lett. 63, 153 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    D. Stauffer, J. Artif. Soc. Soc. Simul. 5, 1 (2001)MathSciNetGoogle Scholar
  7. 7.
    D. Stauffer, P.M.C. de Oliveira, Eur. Phys. J. B 30, 587 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    D. Stauffer, Comput. Phys. Commun. 146, 93 (2002)ADSMATHCrossRefGoogle Scholar
  9. 9.
    F. Slanina, H. Lavicka, Eur. Phys. J. B 35, 279 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    L. Sabatelli, P. Richmond, Physica A 334, 274 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    L. Sabatelli, P. Richmond, Int. J. Mod. Phys. C 14, 1223 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    A.T. Bernardes, U.M.S. Costa, A.D. Araujo, D. Stauffer, Int. J. Mod. Phys. C 12, 159 (2001)CrossRefGoogle Scholar
  13. 13.
    G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Adv. Complex Syst. 3, 87 (2000)CrossRefGoogle Scholar
  14. 14.
    G. Deffuant, F. Amblard, G. Weisbuch, T. Faure, J. Artif. Soc. Soc. Simul. 5, 4 (2002)Google Scholar
  15. 15.
    G. Weisbuch, Eur. Phys. J. B 38, 339 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    G. Weisbuch, G. Deffuant, F. Amblard, J.P. Nadal, in Heterogenous Agents, Interactions and Economic Performance, edited by R. Cowan, N. Jonard, Vol. 521 of Lecture Notes in Economics and Mathematical Systems, pp. 225–242 (Springer, Berlin, Heidelberg, 2003)Google Scholar
  17. 17.
    A.O. Sousa, Physica A 348, 701 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J. Lorenz, Int. J. Mod. Phys. C 18, 1819 (2007)ADSMATHCrossRefGoogle Scholar
  19. 19.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simul. 5, 3 (2002)Google Scholar
  20. 20.
    A. Nowak, J. Szamrej, B. Latané, Psychol. Rev. 97, 362 (1990)CrossRefGoogle Scholar
  21. 21.
    A. Nowak, M. Lewenstein, in Modelling and Simulation in the Social Sciences From A Philosophy of Science Point of View, edited by R. Hegselmann, U. Mueller, K.G. Troitzsch (Kluver, Dordrecht, 1996), pp. 249–285Google Scholar
  22. 22.
    J.A. Hołyst, K. Kacperski, F. Schweitzer, Ann. Rev. Comput. Phys. 20, 531 (2001)Google Scholar
  23. 23.
    K. Kacperski, J.A. Hołyst, Physica A 269, 511 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    K. Kacperski, J.A. Hołyst, Physica A 287, 631 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    P. Sobkowicz, Int. J. Mod. Phys. C 21, 839 (2010)ADSMATHCrossRefGoogle Scholar
  26. 26.
    S. Galam, Quality and Quantity 41, 579 (2007)CrossRefGoogle Scholar
  27. 27.
    E. Kurmyshev, H.A. Juárez, R.A. González-Silva, Physica A 390, 2945 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Galam, Europhys. Lett. 70, 705 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    P. Sobkowicz, A. Sobkowicz, Eur. Phys. J. B 73, 633 (2010)ADSMATHCrossRefGoogle Scholar
  30. 30.
    P. Sobkowicz, A. Sobkowicz, Soc. Sci. Comput. Rev. 30, 448 (2012)CrossRefGoogle Scholar
  31. 31.
    P. Sobkowicz, A. Sobkowicz, Adv. Complex Syst. 15, 1250062 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Schweitzer, D. Garcia, Eur. Phys. J. B 77, 533 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Šuvakov, D. Garcia, F. Schweitzer, B. Tadić, arXiv:1205.6278 (2012)Google Scholar
  34. 34.
    P. Sobkowicz, PLoS ONE 7, e44489 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    E.C. Zeeman, Sci. Am. 234, 66 (1976)CrossRefGoogle Scholar
  36. 36.
    J.B. Rosser Jr., J. Econ. Dyn. Control 31, 3255 (2007)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    B.R. Flay, Behav. Sci. 23, 335 (1978)CrossRefGoogle Scholar
  38. 38.
    A. Tesser, Human Relations 33, 393 (1980)CrossRefGoogle Scholar
  39. 39.
    A. Tesser, J. Achee, in Dynamical Systems in Social Psychology, edited by R.R. Vallacher, A. Nowak (Academic Press, 1994), pp. 95–109Google Scholar
  40. 40.
    H.L. Van der Maas, P.C. Molenaar, Psychol. Rev. 99, 395 (1992)CrossRefGoogle Scholar
  41. 41.
    B. Latané, A. Nowak, Dynamical Systems in Social Psychology, Chap. Attitudes as Catastrophes: From Dimensions to Categories With Increasing Involvement (Academic Press, San Diego, 1994), pp. 219–249Google Scholar
  42. 42.
    B. Latané, J. Commun. 46, 13 (1996)CrossRefGoogle Scholar
  43. 43.
    R.R. Vallacher, A. Nowak, Psychol. Inquiry 8, 73 (1997)CrossRefGoogle Scholar
  44. 44.
    R.R. Vallacher, S.J. Read, A. Nowak, Pers. Soc. Psychol. Rev. 6, 264 (2002)CrossRefGoogle Scholar
  45. 45.
    J.H. Liu, B. Latané, Political Behav. 20, 105 (1998)CrossRefGoogle Scholar
  46. 46.
    S. Galam, Physica A 390, 3036 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    M. Mobilia, Phys. Rev. Lett. 91, 028701 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    M. Mobilia, A. Petersen, S. Redner, J. Stat. Mech. 2007, P08029 (2007)MathSciNetCrossRefGoogle Scholar
  49. 49.
    D. Stauffer, J.S. Sá Martins, Physica A 334, 558 (2004)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    P. Nyczka, K. Sznajd-Weron, J. Stat. Phys. 151, 174 (2013)ADSMATHCrossRefGoogle Scholar
  51. 51.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 67 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks From Biological Nets to the Internet and WWW (Oxford University Press, 2003)Google Scholar
  54. 54.
    M.E.J. Newman, D.J. Watts, S.H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566 (2002)ADSMATHCrossRefGoogle Scholar
  55. 55.
    B. Kozma, A. Barrat, Phys. Rev. E 77, 016102 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    P. Sobkowicz, Int. J. Mod. Phys. C 20, 1645 (2009)ADSMATHCrossRefGoogle Scholar
  57. 57.
    S. Galam, Physica A 333, 453 (2004)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    K.I. Mazzitello, J. Candia, V. Dossetti, Int. J. Mod. Phys. C 18, 1475 (2007)ADSMATHCrossRefGoogle Scholar
  59. 59.
    J.C. González-Avella, M.G. Cosenza, K. Klemm, V.M. Eguíluz, M. San Miguel, J. Artif. Soc. Soc. Simul. 10, 9 (2007)Google Scholar
  60. 60.
    J.C. González-Avella, M.G. Cosenza, M. San Miguel, PloS ONE 7, e51035 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.KEN 94/140WarsawPoland

Personalised recommendations