Accurate ionization potential of gold anionic clusters from density functional theory and many-body perturbation theory

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a theoretical study of the ionization potential in small anionic gold clusters, using density functional theory, with and without exact-exchange, and many body perturbation theory, namely the G0W0 approach. We find that G0W0 is the best approach and correctly describes the first ionization potential with an accuracy of about 0.1 eV.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Schmidbaur, Gold Bull. 23, 11 (1990)

    Article  Google Scholar 

  2. 2.

    M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  3. 3.

    P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

    Article  Google Scholar 

  4. 4.

    P. Pyykkö, Inorg. Chim. Acta 358, 4113 (2005)

    Article  Google Scholar 

  5. 5.

    P. Pyykkö, Chem. Soc. Rev. 37, 1967 (2008)

    Article  Google Scholar 

  6. 6.

    W.-W. Yam, E.C.-C. Cheng, Chem. Soc. Rev. 37, 1806 (2008)

    Article  Google Scholar 

  7. 7.

    G.J. Hutchings, M. Brust, H. Schmidbaur, Chem. Soc. Rev. 37, 1759 (2008)

    Article  Google Scholar 

  8. 8.

    Gold Chemistry. Applications and Future Directions in the Life Sciences, edited by F. Mohr (Wiley-VCH, Weinheim, 2009)

  9. 9.

    B. Hammer, J.K. Norskov, Nature 376, 238 (1995)

    ADS  Article  Google Scholar 

  10. 10.

    D. Schoos, P. Weis, O. Hampe, M.M. Kappes, Philos. Trans. R. Soc. A 368, 1915 (2010)

    Google Scholar 

  11. 11.

    K.J. Taylor, C.L. Pettiettehall, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 96, 3319 (1992)

    ADS  Article  Google Scholar 

  12. 12.

    H. Haäkkinen, B. Yoon, U. Landman, X. Li, H.J. Zhai, L.S. Wang, J. Phys. Chem. A 107, 6168 (2003)

    Article  Google Scholar 

  13. 13.

    J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    S. Bulusu, X. Li, L.S. Wang, X.C. Zeng, Proc. Natl. Acad. Sci. USA 103, 8326 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. von Issendorff, H. Hkkinen, M. Moseler, U. Landman, ChemPhysChem 8, 157 (2007)

    Article  Google Scholar 

  16. 16.

    H. Häkkinen, Chem. Rev. 37, 1847 (2008)

    Article  Google Scholar 

  17. 17.

    N. Shao, W. Huang, Y. Gao, L.-M. Wang, X. Li, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 132, 6596 (2010)

    Article  Google Scholar 

  18. 18.

    W. Huang, R. Pal, L.-M. Wang, X.C. Zeng, L.S. Wang, J. Chem. Phys. 132, 054305 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes, J. Chem. Phys. 117, 6982 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, G. Meijer, Phys. Rev. Lett. 93, 023401 (2004)

    ADS  Article  Google Scholar 

  22. 22.

    X. Xing, B. Yoon, U. Landman, J.H. Parks, Phys. Rev. B 74, 165423 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    A. Lechtken, C. Neiss, J. Stairs, D. Schoss, J. Chem. Phys. 129, 154304 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    M.P. Johansson, A. Lechtken, D. Schooss, M.M. Kappes, F. Furche, Phys. Rev. A 77, 053202 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    A. Lechtken, C. Neiss, M.M. Kappes, D. Schooss, Phys. Chem. Chem. Phys. 11, 4344 (2009)

    Article  Google Scholar 

  26. 26.

    A. Schweizer, J.M. Weber, S. Gilb, H. Schneider, D. Schooss, M.M. Kappes, J. Chem. Phys. 119, 3699 (2003)

    ADS  Article  Google Scholar 

  27. 27.

    S. Gilb, K. Jacobsen, D. Schooss, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 121, 4619 (1994)

    ADS  Article  Google Scholar 

  28. 28.

    A.N. Gloess, H. Schneider, J.M. Weber, M.M. Kappes, J. Chem. Phys. 128, 114312 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    MathSciNet  ADS  Article  Google Scholar 

  30. 30.

    F. Della Sala, A. Görling, J. Chem. Phys. 115, 5718 (2001)

    ADS  Article  Google Scholar 

  31. 31.

    M. Lundberg, P.E.M. Siegbahn, J. Chem. Phys. 122, 224103 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    E. Fabiano, F. Della Sala, J. Chem. Phys. 126, 214102 (2007)

    ADS  Article  Google Scholar 

  33. 33.

    A.J. Cohen, P. Mori-Sánchez, W. Yang, Science 321, 792 (2008)

    ADS  Article  Google Scholar 

  34. 34.

    F. Della Sala, Theor. Chem. Acc. 117, 981 (2007)

    Article  Google Scholar 

  35. 35.

    R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. 121, 3414 (1999)

    Article  Google Scholar 

  36. 36.

    A. Nagy, H. Adachi, J. Phys. B 33, L585 (2000)

    ADS  Article  Google Scholar 

  37. 37.

    F. Della Sala, Orbital-Dependent Exact-Exchange Methods in Density Functional Theory and Chemical Modelling Applications and Theory (Royal Society of Chemistry, RSC Publishing, 2010), Vol. 7, pp. 115–161

  38. 38.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    ADS  Article  Google Scholar 

  39. 39.

    E. Fabiano, M. Piacenza, F. Della Sala, Phys. Chem. Chem. Phys. 11, 9160 (2009)

    Article  Google Scholar 

  40. 40.

    D.P. Chong, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 116, 1760 (2002)

    ADS  Article  Google Scholar 

  41. 41.

    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    ADS  Article  Google Scholar 

  42. 42.

    J.P. Perdew, M. Levy, Phys. Rev. B 56, 16021 (1997)

    ADS  Article  Google Scholar 

  43. 43.

    E. Fabiano, L.A. Constantin, F. Della Sala, Int. J. Quant. Chem. 113, 673 (2013)

    Article  Google Scholar 

  44. 44.

    R.P. Messmer, T.C. Caves, C.M. Kao, Chem. Phys. Lett. 90, 296 (1982)

    ADS  Article  Google Scholar 

  45. 45.

    D. Post, E.J. Baerends, Chem. Phys. Lett. 86, 176 (1982)

    ADS  Article  Google Scholar 

  46. 46.

    T. Stein, H. Eisenberg, L. Kronik, R. Baer, Phys. Rev. Lett. 105, 266802 (2010)

    ADS  Article  Google Scholar 

  47. 47.

    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    ADS  Article  Google Scholar 

  48. 48.

    P. Duffy, D.P. Chong, M.E. Casida, D.R. Salahub, Phys. Rev. A 50, 4707 (1994)

    ADS  Article  Google Scholar 

  49. 49.

    L. Hedin, Phys. Rev. 139, A796 (1965)

    ADS  Article  Google Scholar 

  50. 50.

    F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

    ADS  Article  Google Scholar 

  51. 51.

    T. Rangel, D. Kecik, P.E. Trevisanutto, G.M. Rignanese, H.V. Swygenhoven, V. Olevano, Phys. Rev. B 86, 125125 (2012)

    ADS  Article  Google Scholar 

  52. 52.

    E.L. Shirley, R.M. Martin, Phys. Rev. B 47, 15404 (1993)

    ADS  Article  Google Scholar 

  53. 53.

    M. Rohlfing, Int. J. Quant. Chem. 80, 807 (2000)

    Article  Google Scholar 

  54. 54.

    J.C. Grossman, M. Rohlfing, L. Mitas, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 86, 472 (2001)

    ADS  Article  Google Scholar 

  55. 55.

    S. Ishii, K. Ohno, Y. Kawazoe, S.G. Louie, Phys. Rev. B 65, 245109 (2002)

    ADS  Article  Google Scholar 

  56. 56.

    Y. Pavlyukh, W. Hübner, Phys. Lett. A 327, 241 (2004)

    ADS  Article  Google Scholar 

  57. 57.

    A. Stan, N.E. Dahlen, R. van Leeuwen, Europhys. Lett. 76, 298 (2006)

    ADS  Article  Google Scholar 

  58. 58.

    M.L. Tiago, J.R. Chelikowsky, Phys. Rev. B 73, 205334 (2006)

    ADS  Article  Google Scholar 

  59. 59.

    E. Kikuchi, S. Ishii, K. Ohno, Phys. Rev. B 74, 195410 (2006)

    ADS  Article  Google Scholar 

  60. 60.

    Y. Noguchi, S. Ishii, K. Ohno, T. Sasaki, J. Chem. Phys. 129, 104104 (2008)

    ADS  Article  Google Scholar 

  61. 61.

    M.L. Tiago, J.C. Idrobo, S. Öğüt, J. Jellinek, J.R. Chelikowsky, Phys. Rev. B 79, 155419 (2009)

    ADS  Article  Google Scholar 

  62. 62.

    F. Bruneval, Phys. Rev. Lett. 103 176403, (2009)

    ADS  Article  Google Scholar 

  63. 63.

    C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Phys. Rev. B 81, 085103 (2010)

    ADS  Article  Google Scholar 

  64. 64.

    M. Strange, C. Rostgaard, H. Häkkinen, K.S. Thygesen, Phys. Rev. B 83, 115108 (2011)

    ADS  Article  Google Scholar 

  65. 65.

    L. Chiodo, M. Salazar, A.H. Romero, S. Laricchia, F. Della Sala, A. Rubio, J. Chem. Phys. 135, 244704 (2011)

    ADS  Article  Google Scholar 

  66. 66.

    S. Ke, Phys. Rev. B 84, 205415 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  67. 67.

    X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)

    ADS  Article  Google Scholar 

  68. 68.

    C. Faber, C. Attaccalite, V. Olevano, E. Runge, X. Blase, Phys. Rev. B 83, 115123 (2011)

    ADS  Article  Google Scholar 

  69. 69.

    S. Sharifzadeh, I. Tamblyn, P. Doak, P.T. Darancet, J.B. Neaton, Eur. Phys. J. B 85, 323 (2012)

    ADS  Article  Google Scholar 

  70. 70.

    F. Bruneval, J. Chem. Phys. 136, 194107 (2012)

    ADS  Article  Google Scholar 

  71. 71.

    P. Umari, S. Fabris, J. Chem. Phys. 136, 174310 (2012)

    ADS  Article  Google Scholar 

  72. 72.

    N. Marom, F. Caruso, X. Ren, O.T. Hofmann, T. Körzdörfer, J.R. Chelikowsky, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 86, 245227 (2012)

    Article  Google Scholar 

  73. 73.

    M.J. van Setten, F. Weigend, F. Evers, J. Chem. Theor. Comput. 9, 232 (2013)

    Article  Google Scholar 

  74. 74.

    J. Lischner, J. Deslippe, M. Jain, S.G. Louie, Phys. Rev. Lett. 109, 036406 (2012)

    ADS  Article  Google Scholar 

  75. 75.

    E. Fabiano, L.A. Constantin, F. Della Sala, Phys. Rev. B 82, 113104 (2010)

    ADS  Article  Google Scholar 

  76. 76.

    E. Fabiano, L.A. Constantin, F. Della Sala, J. Chem. Phys. 134, 194112 (2011)

    ADS  Article  Google Scholar 

  77. 77.

    J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003)

    ADS  Article  Google Scholar 

  78. 78.

    F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 119, 12753 (2003)

    ADS  Article  Google Scholar 

  79. 79.

    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    ADS  Article  Google Scholar 

  80. 80.

    F. Bruneval, N. Vast, L. Reining, Phys. Rev. B 74, 045102 (2006)

    ADS  Article  Google Scholar 

  81. 81.

    M. Gatti, F. Bruneval, V. Olevano, L. Reining, Phys. Rev. Lett. 99, 266402 (2007)

    ADS  Article  Google Scholar 

  82. 82.

    T. Rangel, A. Ferretti, P.E. Trevisanutto, V. Olevano, G.-M. Rignanese, Phys. Rev. B 84, 045426 (2011)

    ADS  Article  Google Scholar 

  83. 83.

    TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  84. 84.

    D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)

    Article  Google Scholar 

  85. 85.

    V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009)

    ADS  MATH  Article  Google Scholar 

  86. 86.

    V. Havu, V. Blum, P. Havu, M. Scheffler, J. Comput. Phys. 228, 8367 (2009)

    ADS  MATH  Article  Google Scholar 

  87. 87.

    S. Faas, J.G. Snijders, J.H. van Lenthe, E. van Lenthe, E.J. Baerends, Chem. Phys. Lett. 246, 632 (1995)

    ADS  Article  Google Scholar 

  88. 88.

    X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, M. Scheffler, New J. Phys. 14, 053020 (2012)

    ADS  Article  Google Scholar 

  89. 89.

    L.A. Constantin, E. Fabiano, F. Della Sala, Phys. Rev. B 86, 035130 (2012)

    ADS  Article  Google Scholar 

  90. 90.

    J. Paier, M. Marsman, G. Kresse, J. Chem. Phys. 127, 024103 (2007)

    ADS  Article  Google Scholar 

  91. 91.

    F. Della Sala, E. Fabiano, S. Laricchia, S. D’Agostino, M. Piacenza, Int. J. Quant. Chem. 110, 2162 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fabiano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanwar, A., Fabiano, E., Trevisanutto, P. et al. Accurate ionization potential of gold anionic clusters from density functional theory and many-body perturbation theory. Eur. Phys. J. B 86, 161 (2013). https://doi.org/10.1140/epjb/e2013-40016-5

Download citation

Keywords

  • Computational Methods