Skip to main content

Data-driven reconstruction of directed networks

Abstract

We investigate the properties of a recently introduced asymmetric association measure, called inner composition alignment (IOTA), aimed at inferring regulatory links (couplings). We show that the measure can be used to determine the direction of coupling, detect superfluous links, and to account for autoregulation. In addition, the measure can be extended to infer the type of regulation (positive or negative). The capabilities of IOTA to correctly infer couplings together with their directionality are compared against Kendall’s rank correlation for time series of different lengths, particularly focussing on biological examples. We demonstrate that an extended version of the measure, bidirectional inner composition alignment (biIOTA), increases the accuracy of the network reconstruction for short time series. Finally, we discuss the applicability of the measure to infer couplings in chaotic systems.

This is a preview of subscription content, access via your institution.

References

  1. M.O. Jackson, A. Watts, J. Econ. Theor. 106, 265 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  2. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Europhys. Lett. 87, 48007 (2009)

    ADS  Article  Google Scholar 

  3. M. Ding, Y. Chen, S.L. Bressler, in Handbook of Time Series Analysis, edited by B. Schelter, M. Winterhalder, J. Timmer (Wiley VCH Verlag, Weinheim, 2007), pp. 437 − 460

  4. H. de Jong, J. Comp. Biol. 9, 67 (2002)

    Article  Google Scholar 

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  6. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. D. Marbach, J.C. Costello, R. Kuffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R. Allison, M. Kellis, J.J. Collins, G. Stolovitzky, Nat. Methods 9, 796 (2012)

    Article  Google Scholar 

  8. D. Toubiana, A.R. Fernie, A. Nikoloski, A. Fait, Trends Biotechnol. 31, 29 (2013)

    Article  Google Scholar 

  9. T. Heil, I. Fischer, W. Elsasser, J. Mulet, C. Mirasso, Phys. Rev. Lett. 86, 795 (2001)

    ADS  Article  Google Scholar 

  10. M. Rosenblum, A. Pikovsky, Phys. Rev. E 64, 045202(R) (2001)

    ADS  Article  Google Scholar 

  11. P. Capitani, P. Ciaccia, Data Know. Eng. 62, 438 (2007)

    Article  Google Scholar 

  12. F.D. Gibbons, F.P. Roth, Gen. Res. 12, 1574 (2002)

    Article  Google Scholar 

  13. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

    ADS  Article  Google Scholar 

  14. W. Li, J. Stat. Phys. 60, 823 (1990)

    ADS  MATH  Article  Google Scholar 

  15. S. Guo, A.K. Seth, K.M. Kendrick, C. Zhou, J. Feng, J. Neurosci. Methods 172, 79 (2008)

    Article  Google Scholar 

  16. S. Hempel, A. Koseska, Z. Nikoloski, J. Kurths, BMC Bioinf. 12, 292 (2011)

    Article  Google Scholar 

  17. N. Wessel, A. Suhrbier, M. Riedl, N. Marwan, H. Malberg, G. Bretthauer, T. Penzel, J. Kurths, Europhys. Lett. 87, 10004 (2009)

    ADS  Article  Google Scholar 

  18. S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Phys. Rev. Lett. 107, 054101 (2011)

    ADS  Article  Google Scholar 

  19. U. Alon, Nat. Rev. Gen. 8, 450 (2007)

    Article  Google Scholar 

  20. T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren, B. De Moor, K. Marchal, BMC Bioinf. 7, 43 (2006)

    Article  Google Scholar 

  21. S.M. Smith, D.C. Fulton, T. Chia, D. Thorneycroft, A. Chapple, H. Dunstan, C. Hylton, S.C. Zeeman, A.M. Smith, Plant Physiol. 136, 2687 (2004)

    Article  Google Scholar 

  22. M. Mutarelli, L. Cicatiello, L. Ferraro, O.M. Grober, M. Ravo, A.M. Facchiano, C. Angelini, A. Weisz, BMC Bioinf. 9, S12 (2008)

    Article  Google Scholar 

  23. S.S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nat. Genet. 31, 64 (2002)

    Article  Google Scholar 

  24. N. Guelzim, S. Bottani, P. Bourgine, F. Kepes, Nat. Genet. 31, 60 (2002)

    Article  Google Scholar 

  25. A.J. Stewart, R.M. Seymour, A. Pomiankowski, Proc. R. Soc. B: Biol. Sci. 276, 2493 (2009)

    Article  Google Scholar 

  26. T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren, B. De Moor, K. Marchal, Syntren generator (2006), version 1.1.3, http://homes.esat.kuleuven.be/kmarchal/SynTReN/software.html

  27. T. Fawcett, Pattern Recogn. Lett. 27, 861 (2006)

    Article  Google Scholar 

  28. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Phys. Rev. Lett. 96, 208103 (2006)

    ADS  Article  Google Scholar 

  29. J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, B. Schelter, Phys. Rev. Lett. 104, 038701 (2010)

    ADS  Article  Google Scholar 

  30. P. Bogacki, Appl. Math. Lett. 2, 321 (1989)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Hempel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hempel, S., Koseska, A. & Nikoloski, Z. Data-driven reconstruction of directed networks. Eur. Phys. J. B 86, 250 (2013). https://doi.org/10.1140/epjb/e2013-31111-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31111-8

Keywords

  • Statistical and Nonlinear Physics