Simple nonlinear systems and navigating catastrophes

  • Michael S. Harré
  • Simon R. Atkinson
  • Liaquat Hossain
Regular Article

Abstract

Tipping points are a common occurrence in complex adaptive systems. In such systems feedback dynamics strongly influence equilibrium points and they are one of the principal concerns of research in this area. Tipping points occur as small changes in system parameters result in disproportionately large changes in the global properties of the system. In order to show how tipping points might be managed we use the Maximum Entropy (MaxEnt) method developed by Jaynes to find the fixed points of an economic system in two different ways. In the first, economic agents optimise their choices based solely on their personal benefits. In the second they optimise the total benefits of the system, taking into account the effects of all agent’s actions. The effect is to move the game from a recently introduced dual localised Lagrangian problem to that of a single global Lagrangian. This leads to two distinctly different but related solutions where localised optimisation provides more flexibility than global optimisation. This added flexibility allows an economic system to be managed by adjusting the relationship between macro parameters, in this sense such manipulations provide for the possibility of “steering” an economy around potential disasters.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Solé, Phase Transitions (Princeton University Press, Princeton, 2011) Google Scholar
  2. 2.
    T. Lux, M. Marchesi, Nature 397, 498 (1999) CrossRefADSGoogle Scholar
  3. 3.
    B. Mandelbrot, J. Business 36, 394 (1963) CrossRefGoogle Scholar
  4. 4.
    L. Bachelier, Louis Bachelier’s Theory of Speculation: the Origins of Modern Finance (Princeton University Press, Princeton, 2006), Vol. 13 Google Scholar
  5. 5.
    Y. Sato, E. Akiyama, J.D. Farmer, Proc. Natl. Acad. Sci. 99, 4748 (2002) MathSciNetMATHCrossRefADSGoogle Scholar
  6. 6.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957) MathSciNetMATHCrossRefADSGoogle Scholar
  7. 7.
    D. Wolpert, M.S. Harré, E. Olbrich, N. Bertschinger, J. Jost, Phys. Rev. E 85, 036102 (2012) CrossRefADSGoogle Scholar
  8. 8.
    J.K. Goeree, C.A. Holt, Proc. Natl. Acad. Sci. 96, 10564 (1999) MathSciNetMATHCrossRefADSGoogle Scholar
  9. 9.
    S.P. Anderson, J.K. Goeree, C.A. Holt, Scandinavian J. Econ. 106, 581 (2004) CrossRefGoogle Scholar
  10. 10.
    A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. Lett. 95, 238701 (2005) CrossRefADSGoogle Scholar
  11. 11.
    J.M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992) Google Scholar
  12. 12.
    W.A. Brock, S.N. Durlauf, Rev. Econ. Stud. 68, 235 (2001) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    L. Cobb, Behav. Sci. 23, 360 (1978) MathSciNetCrossRefGoogle Scholar
  14. 14.
    E.J. Wagenmakers, P. Molenaar, R.P.P.P. Grasman, P.A.I. Hartelman, H.L.J. van der Maas, Physica D 211, 263 (2005) MathSciNetMATHCrossRefADSGoogle Scholar
  15. 15.
    D.C. Jiles, D.L. Atherton, J. Magn. Magn. Mater. 61, 48 (1986) CrossRefADSGoogle Scholar
  16. 16.
    R.B. Alley et al., Science 299, 2005 (2003) CrossRefADSGoogle Scholar
  17. 17.
    E.C. Zeeman, Sci. Am. 234, 65 (1976) CrossRefGoogle Scholar
  18. 18.
    M. Beekman, D.J.T. Sumpter, F.L.W. Ratnieks, Proc. Natl. Acad. Sci. 98, 9703 (2001) CrossRefADSGoogle Scholar
  19. 19.
    R.D. McKelvey, T.R. Palfrey, Games Econ. Behav. 10, 6 (1995) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    R.D. McKelvey, T.R. Palfrey, Exp. Econ. 1, 9 (1998) MATHGoogle Scholar
  21. 21.
    W. Yoshida, R.J. Dolan, K.J. Friston, PLoS Comput. Biol. 4, e1000254 (2008) MathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Wolpert, J. Jamison, D. Newth, M.S. Harré, BE J. Theor. Econ. 11, article 18 (2011) Google Scholar
  23. 23.
    J.F. Nash et al., Proc. Natl. Acad. Sci. 36, 48 (1950) MathSciNetMATHCrossRefADSGoogle Scholar
  24. 24.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley-interscience, 2006) Google Scholar
  25. 25.
    R. Axelrod, Genetic Algorithms and Simulated Annealing 3, 32 (1987) Google Scholar
  26. 26.
    M.J. Osborne, A. Rubinstein, A course in Game Theory (MIT press, 1994) Google Scholar
  27. 27.
    M.S. Harré, Ph.D. thesis, University of Sydney, 2009 Google Scholar
  28. 28.
    D. Helbing, A mathematical model for behavioral changes by pair interactions, in Economic Evolution and Demographic Change (Springer, 1992), pp. 330–348 Google Scholar
  29. 29.
    A. Traulsen, J.M. Pacheco, L.A. Imhof, Phys. Rev. E 74, 021905 (2006) MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    A.R. Plastino, A. Plastino, Physica A 258, 429 (1998) MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    R. Cont, J.P. Bouchaud, Macroeconomic Dynamics 4, 170 (2000) MATHCrossRefGoogle Scholar
  32. 32.
    P.U. Clark et al., Nature 415, 863 (2002) CrossRefADSGoogle Scholar
  33. 33.
    O. Hoegh-Guldberg et al., Science 318, 1737 (2007) CrossRefADSGoogle Scholar
  34. 34.
    T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, H.J. Schellnhuber, Proc. Natl. Acad. Sci. 105, 1786 (2008) MATHCrossRefADSGoogle Scholar
  35. 35.
    V. Dakos, M. Scheffer, E.H. Van Nes, V. Brovkin, V. Petoukhov, H. Held, Proc. Natl. Acad. Sci. 105, 14308 (2008) CrossRefADSGoogle Scholar
  36. 36.
    M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. Van Nes, M. Rietkerk, G. Sugihara, Nature 461, 53 (2009) CrossRefADSGoogle Scholar
  37. 37.
    T.M. Lenton, Nat. Climate Change 1, 201 (2011) CrossRefADSGoogle Scholar
  38. 38.
    T.M. Lenton, V.N. Livina, V. Dakos, E.H. Van Nes, M. Scheffer, Philos. Trans. Roy. Soc. A 370, 1185 (2012) CrossRefADSGoogle Scholar
  39. 39.
    J. Albrecht, D. François, K. Schoors, Energy Policy 30, 727 (2002) CrossRefGoogle Scholar
  40. 40.
    M.O. Hill, Ecology 54, 427 (1973) CrossRefGoogle Scholar
  41. 41.
    M. Scheffer et al., Nature 413, 591 (2001) CrossRefADSGoogle Scholar
  42. 42.
    V. Plerou, P. Gopikrishnan, H.E. Stanley, Nature 421, 130 (2003) CrossRefADSGoogle Scholar
  43. 43.
    T. Poston, I. Stewart, Catastrophe Theory and its Applications (Dover Pubns., 1996), Vol. 2 Google Scholar
  44. 44.
    D. Sornette, A. Johansen, Physica A 245, 411 (1997) MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    M.S. Harré, T. Bossomaier, Europhys. Lett. 87, 18009 (2009) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael S. Harré
    • 1
  • Simon R. Atkinson
    • 1
  • Liaquat Hossain
    • 1
  1. 1.Complex Systems Group, Faculty of Engineering and Information Technology, The University of SydneySydneyAustralia

Personalised recommendations