Epidemic centrality — is there an underestimated epidemic impact of network peripheral nodes?

Abstract

In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as “superspreaders”, are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks, it is shown that the ranking depends on the dynamical regime of the disease spreading. A possible mechanism leading to this dependence is illustrated in an analytically tractable example. In systems where the allocation of resources to counter disease spreading to individual nodes is based on their ranking, the dynamical regime of disease spreading is frequently not known before the outbreak of the disease. Therefore, we introduce a quantity called epidemic centrality as an average over all relevant regimes of disease spreading as a basis of the ranking. A recently introduced concept of phase diagram of epidemic spreading is used as a framework in which several types of averaging are studied. The epidemic centrality is compared to structural properties of nodes such as node degree, k-cores and betweenness. There is a growing trend of epidemic centrality with degree and k-cores values, but the variation of epidemic centrality is much smaller than the variation of degree or k-cores value. It is found that the epidemic centrality of the structurally peripheral nodes is of the same order of magnitude as the epidemic centrality of the structurally central nodes. The implications of these findings for the distributions of resources to counter disease spreading are discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1991)

  2. 2.

    M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2008)

  3. 3.

    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    ADS  Article  Google Scholar 

  4. 4.

    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    ADS  Article  MATH  Google Scholar 

  5. 5.

    M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  6. 6.

    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    N.C. Grassly, C. Fraser, Nat. Rev. Microbiol. 6, 477 (2008)

    Google Scholar 

  8. 8.

    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  9. 9.

    M. Youssef, R. Kooij, C. Scoglio, J. Comput. Sci. 2, 286 (2011)

    Article  Google Scholar 

  10. 10.

    V. Colizza, A. Barrat, M. Barthelemy, A.J. Valleron, A. Vespignani, PLoS Med. 4, 95 (2007)

    Article  Google Scholar 

  11. 11.

    V. Colizza, A. Barrat, M. Barthelemy, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    V. Colizza, A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    M. Kitsak et al., Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  14. 14.

    L.C. Freeman, Social Networks 1, 215 (1979)

    Article  Google Scholar 

  15. 15.

    N.E. Friedkin, Am. J. Soc. 96, 1478 (1991)

    Article  Google Scholar 

  16. 16.

    K. Klemm, M.A. Serrano, V.M. Eguiluz, M. San Miguel, Sci. Rep. 2, 292 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    Z. Shen et al., Emerg. Infect. Dis. 10, 256 (2004)

    Article  Google Scholar 

  18. 18.

    J.O. Lloyd-Smith, S.J. Schreiber, P. Kopp, W.M. Getz, Nature 438, 355 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    S. Bansal, B.T. Grenfell, L.A. Meyers, J. R. Soc. Interface 4, 879 (2007)

    Article  Google Scholar 

  20. 20.

    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. London A 115, 700 (1927)

    ADS  Article  MATH  Google Scholar 

  21. 21.

    A. Lancic, N. Antulov-Fantulin, M. Sikic, H. Stefancic, Physica A 390, 65 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    E. Volz, L.A. Meyers, J. R. Soc. Interface 6, 233 (2009)

    Article  Google Scholar 

  23. 23.

    I.B. Schwartz, L.B. Shaw, Physics 3, 17 (2010)

    Article  Google Scholar 

  24. 24.

    M.E.J. Newman, Proc. Natl. Acad. Sci. USA. 98, 404 (2001)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  25. 25.

    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  26. 26.

    M.E.J. Newman, http://www-personal.umich.edu/mejn/netdata/.

  27. 27.

    A. Grabowski, N. Kruszevska, R.A. Kosiński, Phys. Rev. E 78, 066110 (2008)

    ADS  Article  Google Scholar 

  28. 28.

    D.G. Gibson et al., Science 329, 52 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    V.T. Vredenburg, R.A. Knapp, T.S. Tunstall, C.J. Briggs, Proc. Natl. Acad. Sci. USA 107, 9689 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    http://en.wikipedia.org/wiki/Beta˙distribution.

  31. 31.

    G.A. Forster, C.A. Gilligan, Proc. Natl. Acad. Sci. USA 104, 4984 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    R.E. Rowthorn, R. Laxminarayan, C.A. Gilligan, J. R. Soc. Interface 6, 1135 (2009)

    Article  Google Scholar 

  33. 33.

    A. Grabowski, M. Rosińska, Eur. Phys. J. B 85, 248 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    A. Grabowski, M. Rosińska, Acta. Phys. Pol. B 37, 1521 (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mile Šikić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Šikić, M., Lančić, A., Antulov-Fantulin, N. et al. Epidemic centrality — is there an underestimated epidemic impact of network peripheral nodes?. Eur. Phys. J. B 86, 440 (2013). https://doi.org/10.1140/epjb/e2013-31025-5

Download citation

Keywords

  • Statistical and Nonlinear Physics