Skip to main content
Log in

Metal-insulator transition in three-band Hubbard model with strong spin-orbit interaction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recent investigations suggest that both spin-orbit coupling and electron correlation play very crucial roles in the 5d transition metal oxides. By using the generalized Gutzwiller variational method and dynamical mean-field theory with the hybridization expansion continuous time quantum Monte Carlo as impurity solver, the three-band Hubbard model with full Hund’s rule coupling and spin-orbit interaction terms, which contains the essential physics of partially filled t 2g sub-shell of 5d materials, is studied systematically. The calculated phase diagram of this model exhibits three distinct phase regions, which are metal, band insulator and Mott insulator. We find that the spin-orbit coupling term tends to greatly enhance the tendency towards the Mott insulator phase. Furthermore, the influence of the electron-electron interaction on the effective strength of spin-orbit coupling in the metallic phase is studied in detail. We conclude that the electron correlation effect on the effective spin-orbit coupling is far beyond the mean-field treatment even in the intermediate coupling region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  2. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  4. L. de’ Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011)

    Article  ADS  Google Scholar 

  5. L. de’ Medici, S.R. Hassan, M. Capone, X. Dai, Phys. Rev. Lett. 102, 126401 (2009)

    Article  ADS  Google Scholar 

  6. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  7. T. Kita, T. Ohashi, N. Kawakami, Phys. Rev. B 84, 195130 (2011)

    Article  ADS  Google Scholar 

  8. B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008)

    Article  ADS  Google Scholar 

  9. D. Pesin, L. Balents, Nat. Phys. 6, 376 (2010)

    Article  Google Scholar 

  10. B.J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, T. Arima, Science 323, 1329 (2009)

    Article  ADS  Google Scholar 

  11. H. Watanabe, T. Shirakawa, S. Yunoki, Phys. Rev. Lett. 105, 216410 (2010)

    Article  ADS  Google Scholar 

  12. G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  13. M. Bremholm, S.E. Dutton, P.W. Stephens, R.J. Cava, J. Solid State Chem. 184, 601 (2011)

    Article  ADS  Google Scholar 

  14. J. Bünemann, W. Weber, F. Gebhard, Phys. Rev. B 57, 6896 (1998)

    Article  ADS  Google Scholar 

  15. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, W. Weber, Phys. Rev. Lett. 101, 236404 (2008)

    Article  ADS  Google Scholar 

  16. N. Lanatà, H.U.R. Strand, X. Dai, B. Hellsing, Phys. Rev. B 85, 035133 (2012)

    Article  ADS  Google Scholar 

  17. XiaoYu Deng, Lei Wang, Xi Dai, Zhong Fang, Phys. Rev. B 79, 075114 (2009)

    Article  ADS  Google Scholar 

  18. P. Werner, A. Millis, Phys. Rev. B 74, 1 (2006)

    Google Scholar 

  19. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  20. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987)

    Article  ADS  Google Scholar 

  21. W. Metzner, D. Vollhardt, Phys. Rev. B 37, 7382 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  23. M.C. Gutzwiller, Phys. Rev. 134, A923 (1964)

    Article  ADS  Google Scholar 

  24. M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  25. Li Huang, Liang Du, Xi Dai, Phys. Rev. B 86, 035150 (2012)

    Article  ADS  Google Scholar 

  26. A. Liebsch, Phys. Rev. Lett. 91, 226401 (2003)

    Article  ADS  Google Scholar 

  27. Li Huang, Yilin Wang, Xi Dai, Phys. Rev. B 85, 245110 (2012)

    Article  ADS  Google Scholar 

  28. Guo-Qiang Liu, V.N. Antonov, O. Jepsen, O.K. Andersen, Phys. Rev. Lett. 101, 026408 (2008)

    Article  ADS  Google Scholar 

  29. A. Subedi, Phys. Rev. B 85, 020408 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Huang, L. & Dai, X. Metal-insulator transition in three-band Hubbard model with strong spin-orbit interaction. Eur. Phys. J. B 86, 94 (2013). https://doi.org/10.1140/epjb/e2013-31024-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31024-6

Keywords

Navigation