Skip to main content
Log in

Strainology of Raman phonons in bended, periodically buckled, and rippled graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We perform a thorough study of the strainology of the Raman response in graphene, for different external perturbations, within the framework of a long-wavelength, effective field theory for the vibrational spectrum. We calculate the evolution of the G-peak for the cases of compressive and stretching strains, and we discuss our results in connection to the physics of the G-peak redshift due to bending/uniaxial strain and the G-peak blueshift due to a substrate. Furthermore, we calculate the Raman response for the cases of periodic buckling of nanoribbons and within a toy model for ripples, and in both cases we are able to obtain a rather broad, D-like-peak in the Raman spectrum, even for the case of defect free graphene. We discuss all our theoretical results in connection to recent Raman spectroscopy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  2. K.I. Bolotin et al., Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  3. S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  4. C. Lee et al., Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  5. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  6. M.S. Fuhrer, C.N. Lau, A.H. MacDonald, MRS Bulletin 35, 289 (2010)

    Article  Google Scholar 

  7. A.H. Castro Neto, K. Novoselov, Rep. Prog. Phys. 74, 082501 (2011)

    Article  ADS  Google Scholar 

  8. D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, Angew. Chem. Int. Edition 49, 9336 (2010)

    Article  Google Scholar 

  9. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  10. A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  11. D.R. Cooper et al., ISRN Condensed Matter Physics, Article ID 501686 (2012)

  12. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    Article  ADS  Google Scholar 

  13. Y. Zhu et al., Adv. Mater. 22, 3906 (2010)

    Article  Google Scholar 

  14. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens. Matter Phys. 1, 89D108 (2010)

    Article  Google Scholar 

  15. A.C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  16. S. Pisana et al., Nat. Mater. 6, 198 (2007)

    Article  ADS  Google Scholar 

  17. S. Piscanec et al., Phys. Rev. Lett. 93, 185503 (2004)

    Article  ADS  Google Scholar 

  18. A. Jorio et al., Phys. Rev. B 66, 115411 (2002)

    Article  ADS  Google Scholar 

  19. M.S. Dresselhaus et al., Physica B 323, 15 (2002)

    Article  ADS  Google Scholar 

  20. M. Lazzeri et al., Phys. Rev. Lett. 95, 236802 (2005)

    Article  ADS  Google Scholar 

  21. M. Lazzeri et al., Phys. Rev. B 73, 155426 (2006)

    Article  ADS  Google Scholar 

  22. S. Piscanec et al., Phys. Rev. Lett. 75, 035427 (2007)

    ADS  Google Scholar 

  23. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  ADS  Google Scholar 

  24. T.M.G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  25. J. Rohrl et al., Appl. Phys. Lett. 92, 201918 (2008)

    Article  ADS  Google Scholar 

  26. Z.H. Ni et al., Phys. Rev. B 77, 115416 (2008)

    Article  ADS  Google Scholar 

  27. J. Yan et al., Phys. Rev. Lett. 98, 166802 (2007)

    Article  ADS  Google Scholar 

  28. A.H. Castro Neto, F. Guinea, Phys. Rev. B 75, 045404 (2007)

    Article  ADS  Google Scholar 

  29. J.A. Robinson et al., Nano Lett. 9, 2873 (2009)

    Article  ADS  Google Scholar 

  30. S. Piscanec et al., Eur. Phys. J. Special Topics 148, 159 (2007)

    Article  ADS  Google Scholar 

  31. Z. Ni et al., Nano Research 1, 273 (2008)

    Article  Google Scholar 

  32. L.M. Malard et al., Phys. Rep. 473, 51 (2009)

    Article  ADS  Google Scholar 

  33. Yi. Wang et al., ACS Nano 5, 3645 (2011)

    Article  Google Scholar 

  34. Chun-Chung Chen et al., Nano Lett. 9, 4172 (2009)

    Article  ADS  Google Scholar 

  35. L.D. Landau, E.M. Lifschitz, Theory of Elasticity (Pergamon Press, Oxford, 1959)

  36. C. Nisoli et al., Phys. Rev. Lett. 99, 045501 (2007)

    Article  ADS  Google Scholar 

  37. L.A. Falkovsky, J. Exp. Theor. Phys. 105, 397 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.B. Silva Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, L., Silva Neto, M. Strainology of Raman phonons in bended, periodically buckled, and rippled graphene. Eur. Phys. J. B 86, 267 (2013). https://doi.org/10.1140/epjb/e2013-31007-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31007-7

Keywords

Navigation