Complex-valued information entropy measure for networks with directed links (digraphs). Application to citations by community agents with opposite opinions

Regular Article

Abstract

The notion of complex-valued information entropy measure is presented. It applies in particular to directed networks (digraphs). The corresponding statistical physics notions are outlined. The studied network, serving as a case study, in view of illustrating the discussion, concerns citations by agents belonging to two distinct communities which have markedly different opinions: the Neocreationist and Intelligent Design Proponents, on one hand, and the Darwinian Evolution Defenders, on the other hand. The whole, intra- and inter-community adjacency matrices, resulting from quotations of published work by the community agents, are elaborated and eigenvalues calculated. Since eigenvalues can be complex numbers, the information entropy may become also complex-valued. It is calculated for the illustrating case. The role of the imaginary part finiteness is discussed in particular and given some physical sense interpretation through local interaction range consideration. It is concluded that such generalizations are not only interesting and necessary for discussing directed networks, but also may give new insight into conceptual ideas about directed or other networks. Notes on extending the above to Tsallis entropy measure are found in an Appendix.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    I. Procaccia, Nature 333, 498 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    R. Grobe, F. Haake, H.-J. Sommers, Phys. Rev. Lett. 61, 1899 (1988) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Y.V. Fyodorov, B.A. Khoruzhenko, Phys. Rev. Lett. 83, 65 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    P. Di Francesco, M. Gaudin, C. Itzykson, F. Lesage, Int. J. Mod. Phys. A 9, 4257 (1994)ADSMATHCrossRefGoogle Scholar
  7. 7.
    B. Jancovici, Mol. Phys. 42, 1251 (1984) ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Forrester, B. Jancovici, Int. J. Mod. Phys. A 11, 941 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    M. Ausloos, J.B. Sousa, M.M. Amado, R.P. Pinto, Appl. Phys. Lett. 43, 927 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    M. Ausloos, in Non Linear Phenomena at Phase Transitions and Instabilities, edited by T. Riste (Plenum Press, New York, 1982), pp. 337–341Google Scholar
  11. 11.
    H.E. Stanley, Phase Transitions and Critical Phenomena (Clarendon Press, London, 1971)Google Scholar
  12. 12.
    M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998)ADSMATHCrossRefGoogle Scholar
  13. 13.
    H.E. Stanley, Rev. Mod. Phys. 71, 358 (1999)CrossRefGoogle Scholar
  14. 14.
    C.J. Thompson, Mathematical Statistical Mechanics (Macmillan, London, 1971)Google Scholar
  15. 15.
    E. Brezin, J.C. LeGuillou, J. Zinn-Justin, Phys. Rev. Lett. 32, 473 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Anifrani, C. Le Floc’h, D. Sornette, B. Souillard, J. Phys. I 5, 631 (1995)CrossRefGoogle Scholar
  17. 17.
    D. Sornette, Phys. Rep. 297, 239 (1998) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    K. Huang, Statistical Mechanics (Wiley, New York, 1963)Google Scholar
  19. 19.
    H. Theil, Econometrica 33, 67 (1965)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Miśkiewicz, Physica A 387, 6595 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    F.O. Redelico, A.N. Proto, Int. J. Bifurc. Chaos 20, 413 (2010)CrossRefGoogle Scholar
  22. 22.
    Q. Wang, Y. Shen, J.Q. Zhang, Physica D 200, 287 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    I.F. Wilde, Lecture Notes on Complex Analysis (Imperial College Press, London, 2006)Google Scholar
  24. 24.
    K.W. Boyack, S. Milojević, K. Börner, S. Morris, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 3–22Google Scholar
  25. 25.
    Y. Li, H.D. Cao, Y. Tan, Complexity 17, 13 (2011)CrossRefGoogle Scholar
  26. 26.
    R. Sinatra, D. Condorelli, V. Latora, Phys. Rev. Lett. 105, 178702 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    V. Venkatasubramanian, S. Katare, P.R. Patkar, F.-P. Mu, Comput. Chem. Eng. 28, 1789 (2004) CrossRefGoogle Scholar
  28. 28.
    T. Araújo, R. Vilela Mendes, Complex Syst. 12, 357 (2000)Google Scholar
  29. 29.
    L. Kullmann, J. Kertész, K. Kaski, Phys. Rev. E 64, 057105 (2001) CrossRefGoogle Scholar
  30. 30.
    L. Guo, Xu Cai, Int. J. Mod. Phys. C 19, 1909 (2008) ADSMATHCrossRefGoogle Scholar
  31. 31.
    S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    B. Tadić, Physica A 286, 509 (2001) Google Scholar
  33. 33.
    G. Mukherjee, S.S. Manna, Phys. Rev. E 71, 066108 (2005) ADSCrossRefGoogle Scholar
  34. 34.
    L.A. Meyers, M.E.J. Newman, B. Pourbohloul, J. Theor. Biol. 240, 400 (2006) MathSciNetCrossRefGoogle Scholar
  35. 35.
    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    A. Ramzanpour, V. Karimipour, Phys. Rev. E 66, 036128 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    A.D. Sánchez, J.M. López, M.A. Rodríguez, Phys. Rev. Lett. 88, 048701 (2002) CrossRefGoogle Scholar
  38. 38.
    F. Radicchi, S. Fortunato, A. Vespignani, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 233–257Google Scholar
  39. 39.
    M. Szell, R. Lambiotte, S. Thurner, Proc. Natl. Acad. Sci. 107, 13636 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    A. Garcia Cantù Ross, M. Ausloos, Scientometrics 80, 457 (2009)CrossRefGoogle Scholar
  41. 41.
    G. Rotundo, M. Ausloos, Physica A 389, 5479 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    A. Bermann, N. Shaked-Monderer, Nonnegative Matrices and Digraphs, Encyclopedia of Complexity and System Science (Springer, 2008)Google Scholar
  43. 43.
    O. Perron, Math. Ann. 64, 248 (1907)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    G. Frobenius, S.-B. Prüss, Akad. Wiss. Berlin 456 (1912)Google Scholar
  45. 45.
  46. 46.
    R.B. Bapat, T.E.S. Raghavan, Nonnegative Matrices and Applications, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997), Vol. 64Google Scholar
  47. 47.
    A. Berman, M. Neumann, R.J. Stern, Nonnegative Matrices in Dynamic Systems (Wiley-Interscience, New York, 1989)Google Scholar
  48. 48.
    A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics (SIAM, Philadelphia, 1994)Google Scholar
  49. 49.
    H. Minc, Nonnegative Matrices (Wiley, New York, 1988)Google Scholar
  50. 50.
    U. Rothblum, Nonnegative Matrices and Stochastic Matrices, in Handbook of Linear Algebra, edited by L. Hogben (CRC Press, 2006)Google Scholar
  51. 51.
    E. Senata, Nonnegative Matrices and Markov Chains, Springer Series in Statistics (Springer-Verlag, Berlin, 1981) Google Scholar
  52. 52.
    C. Meyer, Matrix Analysis and Applied Linear Algebra (2000), Chap. 8.3, p. 670, http://www.matrixanalysis.com/Chapter8.pdf
  53. 53.
    F.R. Gantmacher, The Theory of Matrices, K.A. Hirsch, transl. 2000 (AMA Chelsea Publ., 2000), Chap. XIII.3, p. 66Google Scholar
  54. 54.
    R.E. Tarjan, SIAM J. Comput. 1, 146 (1972)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009) ADSCrossRefGoogle Scholar
  56. 56.
    W. Zweger, J. Phys. A 18, 2079 (1985) MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    J.S. Langer, Ann. Phys. 54, 258 (1969)ADSCrossRefGoogle Scholar
  58. 58.
    W. Cook, C. Mounfield, P. Ormerod, L. Smith, Eur. Phys. J. B 27, 189 (2002)ADSGoogle Scholar
  59. 59.
    G. Livan, L. Rebecchi, Eur. Phys. J. B 85, 213 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    S. Droźdź, J. Kwapień, A.Z. Gorski, P. Oswieçimka, Acta Phys. Pol. B 37, 3039 (2006) ADSGoogle Scholar
  61. 61.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  62. 62.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998) CrossRefGoogle Scholar
  63. 63.
    C. Tsallis, Braz. J. Phys. 29, 1 (1999)ADSCrossRefGoogle Scholar
  64. 64.
    G. Wilk, Z. Wlodarczyk, Acta Phys. Pol. B 35, 871 (2004)ADSGoogle Scholar
  65. 65.
    M. Ausloos, J. Miśkiewicz, Braz. J. Phys. 39, 388 (2009)ADSGoogle Scholar
  66. 66.
    J.R. Iglesias, R.M.C. de Almeida, Eur. Phys. J. B 85, 85 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    J. Moody, Social Netw. 20, 291 (1998)CrossRefGoogle Scholar
  68. 68.
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, U. Alon, Science 303, 1538 (2004) ADSCrossRefGoogle Scholar
  70. 70.
    V. Batagelj, A. Mrvar, Pajek, Program for Analysis and Visualization of Large Networks Reference Manual, Fig. 15, p. 52 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Methods and Models for Economics, Territory and FinanceLa Sapienza University of RomeRomeItaly
  2. 2.Résidence BeauvallonAngleurBelgium

Personalised recommendations