Skip to main content
Log in

Multipole-based modal analysis of gate-defined quantum dots in graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 28 October 2013

Abstract

A new numerical method based on the multipoles of the Dirac equation is presented for rigorous and fast analysis of electron scattering from gate-defined structures in graphene. The new method is used to study the strongly bound states and the weakly bound states of a circular quantum dot. The accuracy of the obtained results is then verified by the T-matrix method. Furthermore, we characterize the resonances of elliptical gate-defined quantum dots and compare these resonances with the strongly bound states of circular dots. The effects of coupling between two quantum dots are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  2. J. Fischer, B. Trauzettel, D. Loss, Phys. Rev. B 80, 155401 (2009)

    Article  ADS  Google Scholar 

  3. D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)

    Article  ADS  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  6. G. Giavaras, F. Nori, Phys. Rev. B 85, 165446 (2012)

    Article  ADS  Google Scholar 

  7. N. Myoung, G. Ihm, S.J. Lee, Phys. Rev. B 83, 113407 (2011)

    Article  ADS  Google Scholar 

  8. F. Libisch, S. Rotter, J. Güttinger, C. Stampfer, J. Burgdörfer, Phys. Rev. B 81, 245411 (2010)

    Article  ADS  Google Scholar 

  9. M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 84, 245403 (2011)

    Article  ADS  Google Scholar 

  10. J.W. Gonzïalez, M. Pacheco, L. Rosales, P.A. Orellana, Phys. Rev. B 83, 155450 (2011)

    Article  ADS  Google Scholar 

  11. D. Subramaniam, F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff, M. Liebmann, J. Burgdörfer, C. Busse, T. Michely, R. Mazzarello, M. Pratzer, M. Morgenstern, Phys. Rev. Lett. 108, 046801 (2012)

    Article  ADS  Google Scholar 

  12. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320, 356 (2008)

    Article  ADS  Google Scholar 

  13. Y. Xiong, B. Xiong, J. Appl. Phys. 109, 103707 (2011)

    Article  ADS  Google Scholar 

  14. J.H. Bardarson, M. Titov, P.W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009)

    Article  ADS  Google Scholar 

  15. M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009)

    Article  ADS  Google Scholar 

  16. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Nature 421, 925 (2003)

    Article  ADS  Google Scholar 

  17. M. Schneider, P.W. Brouwer, Phys. Rev. B 84, 115440 (2011)

    Article  ADS  Google Scholar 

  18. M. Titov, P.M. Ostrovsky, I.V. Gornyi, A. Schuessler, A.D. Mirlin, Phys. Rev. Lett. 104, 076802 (2010)

    Article  ADS  Google Scholar 

  19. E. Moreno, D. Erni, Ch. Hafner, Phys. Rev. B 65, 155120 (2002)

    Article  ADS  Google Scholar 

  20. E. Moreno, D. Erni, Ch. Hafner, R. Vahldieck, J. Opt. Soc. Am. A 19, 101 (2002)

    Article  ADS  Google Scholar 

  21. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Pal, W. Apel, L. Schweitzer, Phys. Rev. B 84, 075446 (2011)

    Article  ADS  Google Scholar 

  23. J. Liwei, Y. Guodong, G. Wenzhu, L. Zhe, Z. Yisong, Phys. Rev. B 86, 165433 (2012)

    Article  ADS  Google Scholar 

  24. J.U. Nuckel, A.D. Stone, R.K. Chang, Opt. Lett. 19, 1693 (1994)

    Article  ADS  Google Scholar 

  25. M. Liertzer, Li Ge, A. Cerjan, A.D. Stone, H.E. Türeci, S. Rotter, Phys. Rev. Lett. 108, 173901 (2012)

    Article  ADS  Google Scholar 

  26. S. Preu, H.G.L. Schwefel, S. Malzer, G.H. Döhler, L.J. Wang, M. Hanson, J.D. Zimmerman, A.C. Gossard, Opt. Express 16, 7336 (2008)

    Article  ADS  Google Scholar 

  27. G. Fasching, Ch. Deutsch, A. Benz, A.M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiunas, K. Unterrainer, Opt. Express 17, 20321 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Raeis-Zadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeis-Zadeh, S., Safavi-Naeini, S. Multipole-based modal analysis of gate-defined quantum dots in graphene. Eur. Phys. J. B 86, 295 (2013). https://doi.org/10.1140/epjb/e2013-30970-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30970-1

Keywords

Navigation