Modification of domain-wall propagation in Co nanowires via Ga+ irradiation
- 375 Downloads
- 10 Citations
Abstract
The propagation of domain walls in polycrystalline Co nanowires grown by focused-electron-beam-induced deposition is explored. We have found that Ga+ irradiation via focused ion beam is a suitable method to modify the propagation field of domain walls in magnetic conduits. Magneto-optical Kerr effect measurements show that global Ga+ irradiation of the nanowires increases the domain-wall propagation field. Additionally, we have observed by means of scanning transmission X-ray microscopy that it is possible to produce substantial domain-wall pinning via local Ga+ irradiation of a narrow region of the nanowire. In both cases, Ga+ doses of the order of 1016 ions/cm2 are required to produce such effects. These results pave the way for the controlled manipulation of domain walls in Co nanowires via Ga+ irradiation.
Keywords
Domain Wall Perpendicular Magnetic Anisotropy Magnetic Domain Wall Domain Wall Propagation Kerr SignalReferences
- 1.C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6, 813 (2007)ADSCrossRefGoogle Scholar
- 2.I.R. McFadyen, E.E. Fullerton, M.J. Carey, MRS Bulletin 31, 379 (2006)CrossRefGoogle Scholar
- 3.D.L. Graham, H.A. Ferreira, P.P. Freitas, Trends Biotechnol. 22, 428 (2004)CrossRefGoogle Scholar
- 4.D.A. Alwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)ADSCrossRefGoogle Scholar
- 5.S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)ADSCrossRefGoogle Scholar
- 6.M. Donolato et al., Adv. Mater. 22, 2706 (2010)CrossRefGoogle Scholar
- 7.R.P. Cowburn, D.A. Allwood, G. Xiong, M.D. Cook, J. Appl. Phys. 91, 6949 (2002)ADSCrossRefGoogle Scholar
- 8.A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)ADSCrossRefGoogle Scholar
- 9.G. Malinowski, O. Boulle, M. Kläui, J. Phys. D 44, 384005 (2011)ADSCrossRefGoogle Scholar
- 10.A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)ADSCrossRefGoogle Scholar
- 11.M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, J. Appl. Phys. 93, 7885 (2003)ADSCrossRefGoogle Scholar
- 12.E.R. Lewis et al., Nat. Mater. 9, 980 (2010)ADSCrossRefGoogle Scholar
- 13.L. O’Brien et al., Phys. Rev. Lett. 106, 087204 (2011)MathSciNetADSCrossRefGoogle Scholar
- 14.A.J. Schellekens, A. Van den Brink, J.H. Franken, H.J.M. Swagten, B. Koopmans, Nat. Commun. 3, 847 (2012)CrossRefGoogle Scholar
- 15.D. Chiba et al., Nat. Commun. 3, 888 (2012)CrossRefGoogle Scholar
- 16.J.H. Franken, M. Hoeijmakers, R. Lavrijsen, H.J.M. Swagten, J. Phys.: Condens. Matter 24, 024216 (2012)ADSCrossRefGoogle Scholar
- 17.C. Chappert et al., Science 280, 1919 (1998)ADSCrossRefGoogle Scholar
- 18.T. Gerhardt, A. Drews, G. Meier, J. Phys.: Condens. Matter 24, 024208 (2012)ADSCrossRefGoogle Scholar
- 19.J. Fassbender, J. McCord, J. Magn. Magn. Mater. 320, 579 (2008)CrossRefGoogle Scholar
- 20.D. Weller, J.E.E. Baglin, A.J. Kellock, K.A. Hannibal, M.F. Toney, J. Appl. Phys. 87, 5768 (2000)ADSCrossRefGoogle Scholar
- 21.C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J.P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet, H. Bernas, J. Appl. Phys. 91, 3103 (2002)ADSCrossRefGoogle Scholar
- 22.M. Cormier et al., J. Phys. D 44, 215002 (2011)ADSCrossRefGoogle Scholar
- 23.D. Ozkaya, R.M. Langford, W.L. Chan, A.K. Petford-Long, J. Appl. Phys. 91, 9937 (2002)ADSCrossRefGoogle Scholar
- 24.J. Barzola-Quiquia, S. Dusari, G. Bridoux, F. Bern, A. Molle, P. Esquinazi, Nanotechnology 21, 145306 (2010)ADSCrossRefGoogle Scholar
- 25.T.T. Suzuki, H. Kuwahara, Y. Yamauch, Surf. Sci. 605, 1197 (2011)ADSCrossRefGoogle Scholar
- 26.J.H. Franken, H.J.M. Swagten, B. Koopmans, Nature Nanotechnol. 7, 499 (2012)ADSCrossRefGoogle Scholar
- 27.Nanofabrication using focused ion and electron beams: principles and applications edited by P.E. Russell, I. Utke, S. Moshkalev (Oxford University Press, New York, 2012)Google Scholar
- 28.D.A. Alwood, G. Xiong, M.D. Cooke, R.P. Cowburn, J. Phys. D 36, 2175 (2003)ADSCrossRefGoogle Scholar
- 29.A.L.D. Kilcoyne et al., J. Synchr. Radiat. 10, 125 (2003)CrossRefGoogle Scholar
- 30.I. Utke, P. Hoffmann, R. Berger, L. Scandella, Appl. Phys. Lett. 80, 4792 (2002)ADSCrossRefGoogle Scholar
- 31.A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, J. Phys. D 42, 055005 (2009)ADSCrossRefGoogle Scholar
- 32.L. Serrano-Ramón, R. Córdoba, L.A. Rodríguez, C. Magén, E. Snoeck, C. Gatel, I. Serrano, M.R. Ibarra, J.M. De Teresa, ACS Nano 5, 7781 (2011)CrossRefGoogle Scholar
- 33.E. Nikulina, O. Idigoras, P. Vavassori, A. Chuvilin, A. Berger, Appl. Phys. Lett. 100, 142401 (2012)ADSCrossRefGoogle Scholar
- 34.D.A. Allwood, N. Vernier, Gang Xiong, M.D. Cooke, D. Atkinson, C.C. Faulkner, R.P. Cowburn, Appl. Phys. Lett. 81, 4005 (2002)ADSCrossRefGoogle Scholar
- 35.A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Appl. Phys. Lett. 94, 192509 (2009)ADSCrossRefGoogle Scholar
- 36.M.-Y. Im, L. Bocklage, P. Fischer, G. Meier, Phys. Rev. Lett. 102, 147204 (2009)ADSCrossRefGoogle Scholar
- 37.A. Fernández-Pacheco et al., Nanotechnology 23, 105703 (2012)ADSCrossRefGoogle Scholar
- 38.L. Serrano-Ramón et al., to be publishedGoogle Scholar
- 39.Z.Q. Qiu, S.D. Bader, J. Magn. Magn. Mater. 200, 664 (1999)ADSCrossRefGoogle Scholar
- 40.L. van Kouwen, A. Botman, C.W. Hagen, Nano Lett. 9, 2149 (2009)ADSCrossRefGoogle Scholar
- 41.A. Fernández-Pacheco, J.M. De Teresa, A. Szkudlarek, R. Córdoba, M.R. Ibarra, D. Petit, L. O’Brien, H.T. Zeng, E.R. Lewis, D.E. Read, R.P. Cowburn, Nanotechnology 20, 475704 (2009)ADSCrossRefGoogle Scholar
- 42.D. McGrouther, J.N. Chapman, Appl. Phys. Lett. 87, 022507 (2005)ADSCrossRefGoogle Scholar
- 43.E. Arac, D.M. Burn, D.S. Eastwood, T.P.A. Hase, D. Atkinson, J. Appl. Phys. 111, 044324 (2012)ADSCrossRefGoogle Scholar