Skip to main content
Log in

Controlling depinning and propagation of single domain-walls in magnetic microwires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The magnetization reversal in magnetostrictive amorphous microwires takes place by depinning and propagation of a single domain wall. This is a consequence of the particular domain structure determined by the strong uniaxial anisotropy from the reinforcement of magnetoelastic and shape contributions. In the present study, after an overview on the current state-of-the art on the topic, we introduce the general behaviour of single walls in 30 to 40 cm long Fe-base microwires propagating under homogeneous field. Depending on the way the walls are generated, we distinguish among three different walls namely, standard wall, DW st , depinned and propagating from the wire’s end under homogeneous field which motion is the first one to switch on; reverse wall, DW rev , propagating from the opposite end under non-homogeneous field, and defect wall, DW def , nucleated around local defect. Both, DW rev and DW def are observed only under large enough applied field. In the subsequent section, we study the propagation of a wall under applied field smaller than the switching field. There, we conclude that a minimum field, H dep,0, is needed to depin the DW st , as well as that a minimum field, H prop,0, is required for the wall to propagate long distances. In the last section, we analyse the shape of induced signals in the pickup coils upon the crossing of the walls and its correlation to the domain walls shape. We conclude that length and shape of the wall are significantly distorted by the fact that the wall is typically as long as the measuring coils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Bader, S.S.P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010)

    Article  ADS  Google Scholar 

  2. C.K. Lim, T. Devolder, C. Chappert, J. Grollier, V. Cros, A. Vaures, A. Fert, G. Faini, Appl. Phys. Lett. 84, 2820 (2004)

    Article  ADS  Google Scholar 

  3. T. Ono, H. Miyajima, K. Mibu, N. Hosoito, T. Shinjo, Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  4. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)

    Article  ADS  Google Scholar 

  5. G.S.D. Beach, C. Nistro, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  6. Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521 (2003)

    Article  ADS  Google Scholar 

  7. L. O’Brien, D. Petit, E.R. Lewis, R.P. Cowburn, D.E. Read, J. Sampaio, H.T. Zeng, A.V. Jausovec, Phys. Rev. Lett. 106, 087204 (2011)

    Article  ADS  Google Scholar 

  8. G. Beach, Nat. Mater. 9, 959 (2010)

    Article  ADS  Google Scholar 

  9. M.Y. Im, L. Bocklage, P. Fischer, G. Meier, Phys. Rev. Lett. 102, 147204 (2009)

    Article  ADS  Google Scholar 

  10. D. Djuhana, H.G. Piao, S.H. Lee, D.H. Kim, S.M. Ahn, S.B. Choe, Appl. Phys. Lett. 97, 022511 (2010)

    Article  ADS  Google Scholar 

  11. M. Vazquez, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S.S.K. Parkin (Wiley, Chichester, 2007), Vol. 4, p. 2193

  12. A. Zhukov, V. Zhukova, Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure (Nova Science, Hauppauge, 2009), Vol. 162, p. 11788

  13. H. Chiriac, T.A. Ovari, J. Magn. Magn. Mater. 323, 2929 (2011)

    Article  ADS  Google Scholar 

  14. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, T. Uchiyama, Phys. Stat. Sol. A 208, 493 (2011)

    Article  ADS  Google Scholar 

  15. R. Varga, K.L. Garcia, M. Vazquez, P. Vojtanik, Phys. Rev. Lett. 94, 017201 (2005)

    Article  ADS  Google Scholar 

  16. H. Chiriac, S. Corodeanu, M. Lostun, G. Ababei, T.A. Ovari, J. Appl. Phys. 107, 09A301 (2010)

    Article  Google Scholar 

  17. G. Infante, R. Varga, G.A. Badini-Confalonieri, M. Vazquez, Appl. Phys. Lett. 95, 012503 (2009)

    Article  ADS  Google Scholar 

  18. P.A. Ekstrom, A. Zhukov, J. Phys. D 43, 205001 (2010)

    Article  ADS  Google Scholar 

  19. V. Zhukova, J.M. Blanco, M. Ipatov, A. Zhukov, J. Appl. Phys. 106, 113914 (2009)

    Article  ADS  Google Scholar 

  20. R.L. Novak, J.P. Sinnecker, H. Chiriac, J. Phys. D 41, 095005 (2008)

    Article  ADS  Google Scholar 

  21. K. Richter, R. Varga, G.A. Badini-Confalonieri, M. Vazquez, Appl. Phys. Lett. 96, 182507 (2010)

    Article  ADS  Google Scholar 

  22. A. Kunz, S.C. Reiff, Appl. Phys. Lett. 93, 082503 (2008)

    Article  ADS  Google Scholar 

  23. A. Zhukov, J.M. Blanco, M. Ipatov, A. Chizhik, V. Zhukova, Nano. Res. Lett. 7, 223 (2012)

    Article  Google Scholar 

  24. S. Corodeanu, H. Chiriac, T.A. Ovari, Rev. Sci. Instrum. 82, 094701 (2011)

    Article  ADS  Google Scholar 

  25. J. Ye, R.P. del Real, G. Infante, M. Vazquez, J. Appl. Phys. 113, 043904 (2013)

    Article  ADS  Google Scholar 

  26. M. Ipatov, V. Zhukova, A.K. Zvezdin, A.P. Zhukov, J. Appl. Phys. 106, 103902 (2009)

    Article  ADS  Google Scholar 

  27. V. Zhukova, J.M. Blanco, V. Rodionova, M. Ipatov, A. Zhukov, J. Appl. Phys. 111, 07E311 (2012)

    Article  Google Scholar 

  28. M. Vazquez, G.A. Basheed, G. Infante, R.P. del Real, Phys. Rev. Lett. 108, 037201 (2012)

    Article  ADS  Google Scholar 

  29. J. Hudak, J. Blazek, A. Cverha, P. Gonda, R. Varga, Sens. Actuators A 156, 292 (2009)

    Article  Google Scholar 

  30. T.A. Ovari, M. Tibu, H. Chiriac, IEEE Trans. Magn. 47, 2838 (2011)

    Article  ADS  Google Scholar 

  31. R. Varga, J. Torrejon, Y. Kostyk, K.L. García, G. Infante, G. Badini, M. Vazquez, J. Phys.: Condens. Matter 20, 445215 (2008)

    Article  ADS  Google Scholar 

  32. S.A. Gudoshnikov, Yu.B. Grebenshchikov, B.Ya. Ljubimov, P.S. Palvanov, N.A. Usov, M. Ipatov, A. Zhukov, J. Gonzalez, Phys. Stat. Sol. A 206, 613 (2009)

    Article  ADS  Google Scholar 

  33. J.E.L. Bishop, IEEE Trans. Magn. 13, 1638 (1977)

    Article  ADS  Google Scholar 

  34. D.X. Chen, N.M. Dempsey, M. Vazquez, A. Hernando, IEEE Trans. Magn. 31, 781 (1995)

    Article  ADS  Google Scholar 

  35. R.C. O’Handley, J. Appl. Phys. 46, 4996 (1975)

    Article  ADS  Google Scholar 

  36. L.V. Panina, M. Ipatiov, V. Zhukova, A. Zhukov, Physica B 407, 1442 (2012)

    Article  ADS  Google Scholar 

  37. M. Tibu, M. Lostun, T.A. Ovari, H. Chiriac, Rev. Sci. Instrum. 83, 064708 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vázquez.

Additional information

Contribution to the Topical Issue “New Trends in Magnetism and Magnetic Materials”, edited by Francesca Casoli, Massimo Solzi and Paola Tiberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, A., del Real, R.P. & Vázquez, M. Controlling depinning and propagation of single domain-walls in magnetic microwires. Eur. Phys. J. B 86, 113 (2013). https://doi.org/10.1140/epjb/e2013-30922-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30922-9

Keywords

Navigation