Skip to main content
Log in

Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

These are the experimental results describing random lasing in dye-doped chiral nematic liquid crystals. A novel random lasing emission is studied in this article based on the helical domains of dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Under frequency doubled 532 nm Nd:YAG (yttrium aluminum garnet) laser-pumped optical excitation, we carefully observed and analysed random lasing from dye-doped chiral nematic liquid crystals with wavelength ranges from 600 nm to 620 nm. In addition, the line-width of multi-mode peaks is less than 0.2 nm. The difference between the two random lasing behaviours in the oriented and non-oriented cells arises from the fact that random lasing appearing in the oriented cell results from stronger multiple scattering of light generated by the spiral domains of the liquid crystal molecules. Furthermore, chiral nematic liquid crystal micro-domains with different orientations can induce variation of the diffusion constant, thereby resulting in a decrease or increase in the lasing intensity of the random lasers, and an increase or decrease in their energy thresholds. In addition, a detailed comparison of the two experimental results is also presented in the article, showing the dependence of the lasing threshold and the number of lasing modes on the transport mean free path, the excited area, and the sample size. This process allows us to obtain a random laser by changing the structure of the sample, realising tunable random lasers at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Letokhov, Sov. Phys. J. Exp. Theor. Phys. 26, 835 (1968)

    ADS  Google Scholar 

  2. N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Nature 368, 436 (1994)

    Article  ADS  Google Scholar 

  3. H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999)

    Article  ADS  Google Scholar 

  4. H.E. Tureci, L. Ge, S. Rotter, A.D. Stone, Science 320, 643 (2008)

    Article  ADS  Google Scholar 

  5. H. Cao, J. Phys. A 38, 10497 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. D.S. Wiersma, Nat. Phys. 4, 359 (2008)

    Article  Google Scholar 

  7. O. Zaitsev, L. Deych, J. Opt. 12, 024001 (2010)

    Article  ADS  Google Scholar 

  8. S. Ferjani, V. Barna, A. De Luca, C. Versace, G. Strangi, Opt. Lett. 33, 557 (2008)

    Article  ADS  Google Scholar 

  9. D.S. Wiersma, S. Cavalieri, Phys. Rev. E 66, 056612 (2002)

    Article  ADS  Google Scholar 

  10. D.S. Wiersma, S. Cavalieri, Nature 414, 708 (2001)

    Article  ADS  Google Scholar 

  11. D.J. Gardiner et al., Opt. Express 19, 2432 (2011)

    Article  ADS  Google Scholar 

  12. V. Barna et al., Opt. Express 14, 2695 (2006)

    Article  ADS  Google Scholar 

  13. Y. Takanishi, Y. Ohtsuka, G. Suzaki, S. Nishimura, H. Takezoe, Opt. Express 18, 12909 (2010)

    Article  ADS  Google Scholar 

  14. S. Ferjani, A. De Luca, V. Barna, C. Versace, G. Strangi, Opt. Express 17, 2042 (2009)

    Article  Google Scholar 

  15. Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, L. Xu, Phys. Rev. Lett. 96, 033902 (2006)

    Article  ADS  Google Scholar 

  16. C. Yuen, S.F. Yu, E.S.P. Leong, H.Y. Yang, S.P. Lau, H.H. Hng, IEEE J. Quantum Electron. 41, 970 (2005)

    Article  ADS  Google Scholar 

  17. R.K. Thareja, A. Mitra, Appl. Phys. B 71, 181 (2000)

    Article  ADS  Google Scholar 

  18. P.C. de Oliveira, J.A. McGreevy, N.M. Lawandy, Opt. Lett. 22, 895 (1997)

    Article  ADS  Google Scholar 

  19. Y. Feng, K.I. Ueda, Phys. Rev. A 68, 025803 (2003)

    Article  ADS  Google Scholar 

  20. K.L. van der Molen, A.P. Mosk, Ad Lagendijk, Phys. Rev. A 74, 053808 (2006)

    Article  ADS  Google Scholar 

  21. J.M. Hvam, J. Appl. Phys. 49, 3124 (1978)

    Article  ADS  Google Scholar 

  22. S. Lepri, S. Cavalieri, G.-L. Oppo, D.S. Wierma, Phys. Rev. A 75, 063820 (2007)

    Article  ADS  Google Scholar 

  23. S. Redner, A Guide to first-passage Processes (Cambridge University Press, Cambridge, 2001)

  24. L.G. Wang, Y. Huang, Macromolecules 37, 303 (2004)

    Article  ADS  Google Scholar 

  25. D.S. Wiersma, Mol. Cryst. Liq. Cryst. 375, 15 (2002)

    Google Scholar 

  26. V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarthy, S.R. Forrest, J. Appl. Phys. 84, 4096 (1998)

    Article  ADS  Google Scholar 

  27. A. Tulek, R.C. Polson, Z.V. Vardeny, Nat. Phys. 6, 303 (2010)

    Article  Google Scholar 

  28. T.J. Kippenberg, S.M. Spillane, K.J. Vahalaa, Appl. Phys. Lett. 85, 25 (2004)

    Article  Google Scholar 

  29. M.A. Noginov, I.N. Fowlkes, G. Zhu, J. Novak, Phys. Rev. A 70, 043811 (2004)

    Article  ADS  Google Scholar 

  30. H. Cao, Y.G. Zhao, Phys. Rev. B 59, 15107 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Wu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LW., Deng, LG. Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Eur. Phys. J. B 86, 112 (2013). https://doi.org/10.1140/epjb/e2013-30822-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30822-0

Keywords

Navigation