Skip to main content
Log in

Amplification of terahertz radiation in carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate theoretically the feasibility of amplification of terahertz radiation in aligned achiral carbon nanotubes, a zigzag (12,0) and an armchair (10,10) in comparison with a superlattice using a combination of a constant direct current (dc) and a high-frequency alternate current (ac) electric fields. The electric current density expression is derived using the semiclassical Boltzmann transport equation with a constant relaxation time. The electric field is applied along the nanotube axis. Analysis of the current density versus electric field characteristics reveals a negative differential conductivity behavior at high frequency, as well as photon assisted peaks. The photon assisted peaks are about an order of magnitude higher in the carbon nanotubes compared to the superlattice. These strong phenomena in carbon nanotubes can be used to obtain domainless amplification of terahertz radiation at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.Ya. Slepyan et al., Phys. Rev. A 60, 777 (1999)

    Article  ADS  Google Scholar 

  2. P.H. Siegel, IEEE Trans. Microwave Theor. Tech. 50, 910 (2002)

    Article  ADS  Google Scholar 

  3. M. Tonouchi, Nat. photon. 1, 97 (2007)

    Article  ADS  Google Scholar 

  4. T. Hyart, K.N. Alekseev, E.V. Thuneberg, Phys. Rev. B 77, 165330 (2008)

    Article  ADS  Google Scholar 

  5. A.W.M. Lee et al., Opt. Lett. 19, 2840 (2007)

    Google Scholar 

  6. B. Ferguson, X.C. Zhang, Nat. Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  7. G. Ya. Slepyan et al., Phys. Rev. A 63, (2001) 053808

    Article  ADS  Google Scholar 

  8. D. Dragoman, M. Dragoman, Physica E 25, 492 (2005)

    Article  ADS  Google Scholar 

  9. M. Dragoman et al., Appl. Phys. Lett. 88, 073503 (2006)

    Article  ADS  Google Scholar 

  10. G.Ya. Slepyan et al., Phys. Rev. B 73, 195416 (2006)

    Article  ADS  Google Scholar 

  11. S.A. Maksimenko, G.Y. Slepyan, Phys. Rev. Lett. 84, 362 (2000)

    Article  ADS  Google Scholar 

  12. G. Pennington et al., Phys. Rev. B 68, 045426 (2003)

    Article  ADS  Google Scholar 

  13. J.M. Xu, Infrared Phys. Technol. 42, 485 (2001)

    Article  ADS  Google Scholar 

  14. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  15. V.I. Margulis et al., Physica B 245, 173 (1998)

    Article  ADS  Google Scholar 

  16. J.M. Xu, Infrared Phys. Technol. 42, 485 (2001)

    Article  ADS  Google Scholar 

  17. K.G. Batrakov et al., J. Nanophoton. 4, 041665 (2010)

    Article  ADS  Google Scholar 

  18. M.J. Hagmann, IEEE Trans. Nanotechnol. 4, 289 (2005)

    Article  ADS  Google Scholar 

  19. Y.T. Dai et al., J. Comput. Theor. Nanosci. 5, 1372 (2008)

    Article  Google Scholar 

  20. G.Ya. Slepyan et al., Phys. Rev. B 81, 205423 (2010)

    Article  ADS  Google Scholar 

  21. C. Staneiu et al., Appl. Phys. Lett. 81, 4064 (2002)

    Article  ADS  Google Scholar 

  22. S.S. Abukari, S.Y. Mensah, N.G. Mensah, K.A. Dompreh, A. Twum, F.K.A. Allotey, Direct current generation due to wave mixing in zigzag carbon nanotubes, arXiv:1007. 1772v1

  23. S.A. Maksimenko, G.Ya. Slepyan, in Proceedings of the 8th International Conference on Electromagnetics of Complex Media, Lisbon, Bianisotropics 2000, pp. 249–252

  24. S.A. Ktitorov et al., Sov. Phys. Solid State 13, 1872 (1972)

    Google Scholar 

  25. H. Kroemer, Large-amplitude oscillation dynamics and domain suppression in a superlattice Bloch oscillator, arXiv:cond-mat/0009311v1

  26. C. Kane, L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 79, 5086 (1997)

    Article  ADS  Google Scholar 

  27. K.N. Alekseev et al., Phys. Rev. Lett. 80, 2669 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kofi W. Adu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abukari, S.S., Adu, K.W., Mensah, S.Y. et al. Amplification of terahertz radiation in carbon nanotubes. Eur. Phys. J. B 86, 182 (2013). https://doi.org/10.1140/epjb/e2013-30771-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30771-6

Keywords

Navigation