Skip to main content
Log in

Stroboscopic wave packet description of time-dependent currents through ring-shaped nanostructures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present an implementation of a new method for explicit simulations of time-dependent electric currents through nanojunctions. The method is based on unitary propagation of stroboscopic wave packet states and is designed to treat open systems with fluctuating number of electrons while preserving full quantum coherence throughout the whole infinite system. We demonstrate the performance of the method on a model system consisting of a ring-shaped nanojunction with two semi-infinite tight-binding leads. Time-dependent electron current responses to abrupt bias turn-on or gate potential switching are computed for several ring configurations and ring-leads coupling parameters. The found current-carrying stationary states agree well with the predictions of the Landauer formula. As examples of genuinely time-dependent process we explore the presence of circulating currents in the rings in transient regimes and the effect of a time-dependent gate potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1998)

  2. H. Ness, L.K. Dash, Phys. Rev. B 84, 235428 (2011)

    Article  ADS  Google Scholar 

  3. M. Cini, Phys. Rev. B 22, 5887 (1980)

    Article  ADS  Google Scholar 

  4. G. Stefanucci, C.O. Almbladh, Phys. Rev. B 69, 195318 (2004)

    Article  ADS  Google Scholar 

  5. S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005) and the references therein

    Article  ADS  Google Scholar 

  6. P. Myhnen, A. Stan, G. Stefanucci, R. van Leeuwen, Phys. Rev. B 80, 115107 (2009)

    Article  ADS  Google Scholar 

  7. B. Wang, Y. Xing, L. Zhang, J. Wang, Phys. Rev. B 81, 121103 (2010)

    Article  ADS  Google Scholar 

  8. Y. Wang, C.Y. Yam, G.H. Chen, Th. Frauenheim, T.A. Niehaus, Chem. Phys. 391, 69 (2011)

    Article  ADS  Google Scholar 

  9. X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G. Chen, Phys. Rev. B 75, 195127 (2007)

    Article  ADS  Google Scholar 

  10. H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen, C. Yam, G. Chen, J. Chem. Phys. 137, 044113 (2012)

    Article  ADS  Google Scholar 

  11. K. Torfason, A. Manolescu, V. Molodoveanu, V. Gudmundsson, J. Phys.: Conf. Ser. 338, 012017 (2012)

    Article  ADS  Google Scholar 

  12. P. Hyldgaard, J. Phys.: Condens. Matter 24, 424219 (2012)

    Article  ADS  Google Scholar 

  13. A.P. Horsfield, D.R. Bowler, A.J. Fisher, J. Phys.: Condens. Matter 16, L65 (2004)

    Article  ADS  Google Scholar 

  14. E.J. McEniry, D.R. Bowler, D. Dundas, A.P. Horsfield, C.G. Sánchez, T.N. Todorov, J. Phys.: Condens. Matter 19, 196201 (2007)

    Article  ADS  Google Scholar 

  15. E.J. McEniry, Y. Wang, D. Dundas, T.N. Todorov, L. Stella, R.P. Miranda, A.J. Fisher, A.P. Horsfield, C.P. Race, D.R. Mason, W.M.C. Foulkes, A.P. Sutton, Eur. Phys. J. B 77, 305 (2010)

    Article  ADS  Google Scholar 

  16. P. Bokes, F. Corsetti, R.W. Godby, Phys. Rev. Lett. 101, 046402 (2008)

    Article  ADS  Google Scholar 

  17. P. Bokes, Phys. Chem. Chem. Phys. 11, 4579 (2009)

    Article  Google Scholar 

  18. J. Yi, G. Cuniberti, M. Porto, Eur. Phys. J. B 33, 221 (2003)

    Article  ADS  Google Scholar 

  19. F. Goyer, M. Ernzerhof, M. Zhuang, J. Chem. Phys. 126, 144104 (2007)

    Article  ADS  Google Scholar 

  20. B.T. Pickup, P.W. Fowler, Chem. Phys. Lett. 459, 198 (2008)

    Article  ADS  Google Scholar 

  21. G. Stefanucci, E. Perfetto, S. Bellucci, M. Cini, Phys. Rev. B 79, 073406 (2009)

    Article  ADS  Google Scholar 

  22. J.-B. Xia, Phys. Rev. B 45, 3593 (1992)

    Article  ADS  Google Scholar 

  23. R.E. Sparks, V.M. García-Suárez, D.Z. Manrique, C.J. Lambert, Phys. Rev. B 83, 075437 (2011)

    Article  ADS  Google Scholar 

  24. K.K. Saha, B.K. Nikolić, V. Meunier, W. Lu, J. Bernholc, Phys. Rev. Lett. 105, 236803 (2010)

    Article  ADS  Google Scholar 

  25. K.K. Saha, W. Lu, J. Bernholc, V. Meunier, J. Chem. Phys. 131, 164105 (2009)

    Article  ADS  Google Scholar 

  26. M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Phys. Rev. Lett. 101, 046801 (2008)

    Article  ADS  Google Scholar 

  27. M. Kiguchi, S. Nakashima, T. Tada, S. Watanabe, S. Tsuda, Y. Tsuji, J. Terao, Small 8, 726 (2012)

    Article  Google Scholar 

  28. M. Bai, J. Liang, L. Xie, S. Sanvito, B. Mao, S. Hou, J. Chem. Phys. 136, 104701 (2012)

    Article  ADS  Google Scholar 

  29. W. Hong, H. Li, S.-X. Liu, Y. Fu, J. Li, V. Kaliginedi, S. Decurtins, T. Wandlowski, J. Am. Chem. Soc. 134, 19425 (2012)

    Article  Google Scholar 

  30. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  31. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  32. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  Google Scholar 

  33. B. Hackens, F. Martins, T. Ouisse, H. Sellier, S. Bollaert, X. Wallart, A. Cappy, J. Chevrier, V. Bayot, S. Huant, Nat. Phys. 2, 826 (2006)

    Article  Google Scholar 

  34. F. Martins, B. Hackens, M.G. Pala, T. Ouisse, H. Sellier, X. Wallart, S. Bollaert, A. Cappy, J. Chevrier, V. Bayot, S. Huant, Phys. Rev. Lett. 99, 136807 (2007)

    Article  ADS  Google Scholar 

  35. W. Lei, C. Notthoff, A. Lorke, D. Reuter, A.D. Wieck, Appl. Phys. Lett. 96, 033111 (2010)

    Article  ADS  Google Scholar 

  36. D.M. Cardamone, C.A. Stafford, S. Mazumdar, Nano Lett. 6, 2422 (2006)

    Article  ADS  Google Scholar 

  37. P. Stefański, J. Phys.: Condens. Matter 22, 505303 (2010)

    Article  Google Scholar 

  38. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konôpka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konôpka, M., Bokes, P. Stroboscopic wave packet description of time-dependent currents through ring-shaped nanostructures. Eur. Phys. J. B 86, 114 (2013). https://doi.org/10.1140/epjb/e2013-30770-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30770-7

Keywords

Navigation