Skip to main content
Log in

Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By appealing to a long list of different nonlinear maps we review the characterization of time series arising from chaotic maps. The main tool for this characterization is the permutation Bandt-Pompe probability distribution function. We focus attention on both local and global characteristics of the components of this probability distribution function. We show that forbidden ordinal patterns (local quantifiers) exhibit an exponential growth for pattern-length range 3 ≤ D ≤ 8, in the case of finite time series data. Indeed, there is a minimum D min-value such that forbidden patterns cannot appear for D < D min. The system’s localization in an entropy-complexity plane (global quantifier) displays typical specific features associated with its dynamics’ nature. We conclude that a more “robust” distinction between deterministic and stochastic dynamics is achieved via the present time series’ treatment based on the global characteristics of the permutation Bandt-Pompe probability distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Article  ADS  Google Scholar 

  2. M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14, 1553 (2012)

    Article  Google Scholar 

  3. O.A. Rosso, H.A. Larrondo, M.T. Martín, A. Plastino, M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)

    Article  ADS  Google Scholar 

  4. M. Zanin, Chaos 18, 013119 (2008)

    Article  ADS  Google Scholar 

  5. J.M. Amigó, S. Zambrano, M.A.F. Sanjuán, Europhys. Lett. 79, 50001 (2007)

    Article  ADS  Google Scholar 

  6. J.M. Amigó, Permutation complexity in dynamical systems (Springer-Verlag, Berlin, 2010)

  7. O.A. Rosso, C. Masoller, Phys. Rev. E 79, 040106(R) (2009)

    Article  ADS  Google Scholar 

  8. O.A. Rosso, C. Masoller, Eur. Phys. J. B 69, 37 (2009)

    Article  ADS  Google Scholar 

  9. P.M. Saco, L.C. Carpi, A. Figliola, E. Serrano, O.A. Rosso, Physica A 389, 5022 (2010)

    Article  ADS  Google Scholar 

  10. K. Keller, M. Sinn, Physica A 356, 114 (2005)

    Article  ADS  Google Scholar 

  11. M.C. Soriano, L. Zunino, L. Larger, I. Fischer, C.R. Mirasso, Opt. Lett. 36, 2212 (2011)

    Article  ADS  Google Scholar 

  12. M.C. Soriano, L. Zunino, O.A. Rosso, I. Fischer, C.R. Mirasso, IEEE J. Quantum Electron. 47, 252 (2011)

    Article  ADS  Google Scholar 

  13. L. Zunino, M.C. Soriano, I. Fischer, O.A. Rosso, C.R. Mirasso, Phys. Rev. E 82, 046212 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Zunino, M.C. Soriano, O.A. Rosso, Phys. Rev. E 86, 046210 (2012)

    Article  ADS  Google Scholar 

  15. O.A. Rosso, L.C. Carpi, P.M. Saco, M. Gómez Ravetti, A. Plastino, H.A. Larrondo, Physica A 391, 42 (2012)

    Article  ADS  Google Scholar 

  16. O.A. Rosso, L.C. Carpi, P.M. Saco, M. Gómez Ravetti, H.A. Larrondo, A. Plastino, Eur. Phys. J. B 85, 419 (2012)

    Article  ADS  Google Scholar 

  17. J.M. Amigó, L. Kocarev, J. Szczepanski, Phys. Lett. A 355, 27 (2006)

    Article  ADS  Google Scholar 

  18. J.M. Amigó, S. Zambrano, M.A.F. Sanjuán, Europhys. Lett. 83, 60005 (2008)

    Article  ADS  Google Scholar 

  19. L.C. Carpi, P.M. Saco, O.A. Rosso, Physica A 389, 2020 (2010)

    Article  ADS  Google Scholar 

  20. H. Wold, A Study in the Analysis of Stationary Time Series (Almqvist and Wiksell, Upsala, 1938)

  21. J. Kurths, H. Herzel, Physica D 25, 165 (1987)

    Article  ADS  MATH  Google Scholar 

  22. S. Cambanis, C.D. Hardin, A. Weron, Probab. Theory Related Fields 79, 1 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.P. Feldman, J.P. Crutchfield, Phys. Lett. A 238, 244 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D.P. Feldman, C.S. McTague, J.P. Crutchfield, Chaos 18, 043106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. P.W. Lamberti, M.T. Martín, A. Plastino, O.A. Rosso, Physica A 334, 119 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  27. C. Shannon, W. Weaver, The Mathematical theory of communication (University of Illinois Press, Champaign, 1949)

  28. I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J. Oliver, H.E. Stanley, Phys. Rev. E 65, 041905 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. A.R. Plastino, A. Plastino, Phys. Rev. E 54, 4423 (1996)

    Article  ADS  Google Scholar 

  30. M.T. Martín, A. Plastino, O.A. Rosso, Physica A 369, 439 (2006)

    Article  ADS  Google Scholar 

  31. O.A. Rosso, L. De Micco, H. Larrondo, M.T. Martín, A. Plastino, Int. J. Bifur. Chaos 20, 775 (2010)

    Article  MATH  Google Scholar 

  32. L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Physica A 389, 1891 (2010)

    Article  ADS  Google Scholar 

  33. L. Zunino, B.M. Tabak, F. Serinaldi, M. Zanin, D.G. Pérez, O.A. Rosso, Physica A 390, 876 (2011)

    Article  ADS  Google Scholar 

  34. L. Zunino, A. Fernández Bariviera, M.B. Guercio, L.B. Martinez, O.A. Rosso, Physica A 391, 4342 (2012)

    Article  ADS  Google Scholar 

  35. J.C. Sprott, Chaos and time series analysis (Oxford University Press, New York, 2003)

  36. R. May, Nature 261, 45 (1976)

    Article  Google Scholar 

  37. S.H. Strogatz, Nonlinear dymanics and chaos with applications to physics, biology, chemistry, and engineering (Addison-Wesley-Longman, Reading, 1994)

  38. R.L. Devaney, An introduction to chaotic dynamical systems, 2nd edn. (Addison-Wesley, Redwood City, 1989)

  39. D.E. Knuth, Sorting and searching, Vol. 3 of The art of computer programming, 3rd edn. (Addison-Wesley-Longman, Reading, 1997)

  40. W. Zeng, M. Ding, J. Li, Chinese Phys. Lett. 2, 293 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Ricker, J. Fish. Res. Board Canada 11, 559 (1954)

    Article  Google Scholar 

  42. M.A. van Wyk, W. Steeb, Chaos in electronics (Kluwer, Dordrecht, 1997)

  43. C. Beck, F. Schlögl, Thermodynamics of chaotics systems (Cambridge University Press, New York, 1995)

  44. A. Potapov, M.K. Ali, Phys. Lett. A 277, 310 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. R. Shaw, Z. Naturforsch. A 36, 80 (1981)

    MathSciNet  ADS  MATH  Google Scholar 

  46. V.I. Arnold, Am. Math. Soc. Transl. Ser. 46, 213 (1965)

    Google Scholar 

  47. M. Hénon, Commun. Math. Phys. 50, 69 (1976)

    Article  ADS  MATH  Google Scholar 

  48. R. Lozi, J. Phys. 39, 9 (1978)

    Google Scholar 

  49. D.G. Aronson, M.A. Chory, G.R. Hall, R.P. McGehee, Commun. Math. Phys. 83, 304 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  50. H.E. Nusse, J.A. Yorke, Dynamics: numerical explorations (Springer, New York, 1994)

  51. R.R. Whitehead, N. Macdonald, Physica D 13, 401 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. P.J. Holmes, Philos. Trans. Roy. Soc. London Ser. A 292, 419 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. G. Schmidt, B.H. Wang, Phys. Rev. A 32, 2994 (1985)

    Article  ADS  Google Scholar 

  54. E. Ikeda, Opt. Commun. 30, 257 (1979)

    Article  ADS  Google Scholar 

  55. Ya. G. Sinai, Russian Math. Surv. 27, 21 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. J.R. Beddington, C.A. Free, J.H. Lawton, Nature 255, 58 (1975)

    Article  ADS  Google Scholar 

  57. B.V. Chirikov, Phys. Rep. 52, 273 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  58. M. Hénon, Quart. Appl. Math. 27, 291 (1969)

    MathSciNet  MATH  Google Scholar 

  59. V.I. Arnold, A. Avez, Ergodic problems of classical mechanics (Benjamin, New York, 1968)

  60. R.L. Devaney, Physica D 10, 387 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. A.A. Chernikov, R.Z. Sagdeev, G.M. Zaslavsky, Phys. Today 41, 27 (1988)

    Article  Google Scholar 

  62. E.N. Lorenz, The essence of chaos (University of Washington Press, Seattle, 1993)

  63. B. Nagy, J.D. Farmer, J.E. Trancik, J.P. Gonzales, Technol. Forecast. Soc. Change 78, 1356 (2011)

    Article  Google Scholar 

  64. H.A. Larrondo, Matlab program: noisefk . m (2012), http://www.mathworks.com/matlabcentral/fileexchange/35381

  65. S.I. Resnick, A Probability Path (Birkhäuser, Boston, 1999)

  66. C.F. Manski, Analog estimation methods in econometrics, in Monographs on Statistics and Applied Probability (Chapman & Hall, New York, 1988), Vol. 39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo A. Rosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, O.A., Olivares, F., Zunino, L. et al. Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution. Eur. Phys. J. B 86, 116 (2013). https://doi.org/10.1140/epjb/e2013-30764-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30764-5

Keywords

Navigation