Skip to main content

Exploiting magnetic properties of Fe doping in zirconia

From first-principles simulations to the experimental growth and characterization of thin films


In this study we explore, both from theoretical and experimental side, the effect of Fe doping in ZrO2 (ZrO2:Fe). By means of first principles simulation, we study the magnetization density and the magnetic interaction between Fe atoms. We also consider how this is affected by the presence of oxygen vacancies and compare our findings with models based on impurity band [J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)] and carrier mediated magnetic interaction [T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)]. Experimentally, thin films (≈20 nm) of ZrO2:Fe at high doping concentration are grown by atomic layer deposition. We provide experimental evidence that Fe is uniformly distributed in the ZrO2 by transmission electron microscopy and energy dispersive X-ray mapping, while X-ray diffraction evidences the presence of the fluorite crystal structure. Alternating gradient force magnetometer measurements show magnetic signal at room temperature, however, with low magnetic moment per atom. Results from experimental measures and theoretical simulations are compared.

This is a preview of subscription content, access via your institution.


  1. 1.

    H. Ohno, H. Munekata, T. Penny, S. Von Molnar, L.L. Chang, Phys. Rev. Lett. 68, 2664 (1992)

    ADS  Article  Google Scholar 

  2. 2.

    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 69, 363 (1996)

    Google Scholar 

  3. 3.

    N.H. Hong, C.-K. Park, A.T. Raghavender, O. Ciftja, N.S. Bingham, M.H. Phan, H. Srikanth, J. Appl. Phys. 111, 07C302 (2012)

    Article  Google Scholar 

  4. 4.

    J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneless, Phys. Rev. B 72, 024450 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    T.R. Sahoo, S.S. Manoharan, S. Kurian, N.S. Gajhiye, Hyperfine Interaction 188, 43 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    V.V. Kriventsov, D.I. Kochubey, Y.V. Maximov, I.P. Suzdalev, M.V. Tsodikov, J.A. Navio, M.C. Hidalgo, G. Colón, Nucl. Instrum. Meth. Phys. Res. A 470, 341 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    N.H. Hong, J. Sakai, N. Poirot, A. Ruyter, Appl. Phys. Lett. 86, 242505 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    N.H. Hong, N. Poirotet, J. Sakai, Appl. Phys. Lett. 89, 042503 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    Y. Matsumoto et al., Science 291, 854 (2001)

    ADS  Article  Google Scholar 

  10. 10.

    Z.J. Wang, K.J. Tang, L.D. Tung, W.L. Zhou, L. Spinu, J. Appl. Phys. 93, 7870 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    S. Ostanin, A. Ernst, L.M. Sandratskii, P. Bruno, M. Däne, I.D. Hughes, J.B. Staunton, W. Hergert, I. Mertig, J. Kudrnovskỳ, Phys. Rev. Lett. 98, 016101 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    T. Archer, C.D. Pemmaraju, S. Sanvito, J. Magn. Magn. Mater. 316, e188 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    ADS  Article  Google Scholar 

  15. 15.

    K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    H.P. Gunnlaugsson, T.E. Mlholt, R. Mantovan, H. Masenda, D. Naidoo, W.B. Dlamini, R. Sielemann, K. Baruth-Ram, G. Weyer, K. Johnston, G. Langouche, S. Olafsson, H.P. Gislason, Y. Kobayashi, Y. Yoshida, M. Fanciulli, ISOLDE Collaboration, Appl. Phys. Lett. 97, 142501 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    D. Sangalli, E. Cianci, R. Ciprian, A. Lamperti, M. Perego, A. Debernardi, Phys. Rev. B 87, 085206 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    A. Lamperti, E. Cianci, R. Ciprian, D. Sangalli, A. Debernardi, Thin Solid Films 533, 83 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    A. Lamperti, L. Lamagna, G. Congedo, S. Spiga, J. Electrochem. Soc. 158, G211 (2011)

    Article  Google Scholar 

  20. 20.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009),

    URL  Article  Google Scholar 

  21. 21.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  22. 22.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    MathSciNet  ADS  Article  Google Scholar 

  23. 23.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    MathSciNet  ADS  Article  Google Scholar 

  24. 24.

    D. Vanderbilt, Phys. Rev. B 41, 7892R (1990)

    ADS  Article  Google Scholar 

  25. 25.

    A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227R (1990)

    ADS  Article  Google Scholar 

  26. 26.

    D. Sangalli, A. Debernardi, Phys. Rev. B 84, 214113 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    J.B. Varley, A. Janotti, C. Franchini, C.G. Van de Walle, Phys. Rev. B 85, 081109R (2012)

    ADS  Article  Google Scholar 

  28. 28.

    International Crystal Structure Database, FIZ Karlsruhe and NIST ed., Release 2010 Code #68589 (t-ZrO2)

  29. 29.

    A. Kokalj, Comp. Mater. Sci. 28, 155 (2003)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Davide Sangalli.

Additional information

Contribution to the Topical Issue “New Trends in Magnetism and Magnetic Materials”, edited by Francesca Casoli, Massimo Solzi and Paola Tiberto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sangalli, D., Cianci, E., Lamperti, A. et al. Exploiting magnetic properties of Fe doping in zirconia. Eur. Phys. J. B 86, 211 (2013).

Download citation


  • Generalize Gradient Approximation
  • Atomic Layer Deposition
  • Dilute Magnetic Semiconductor
  • High Doping Concentration
  • Magnetization Density