Emission spectra of LH2 complex: full Hamiltonian model

Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials

Abstract

In the present contribution we study the absorption and steady-state fluorescence spectra for ring molecular system, which can model B850 ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). LH2 is a highly symmetric ring of nine pigment-protein subunits, each containing two transmembrane polypeptide helixes and three bacteriochlorophylls (BChl). The uncorrelated diagonal static disorder with Gaussian distribution (fluctuations of local excitation energies) simultaneously with the diagonal dynamic disorder (interaction with a bath) in Markovian approximation is used in our simulations. We compare calculated absorption and steady state fluorescence spectra obtained within the full Hamiltonian model of the B850 ring with our previous results calculated within the nearest neighbour approximation model and also with experimental data.

References

  1. 1.
    G. McDermott et al., Nature 374, 517 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    M.Z. Papiz et al., J. Mol. Biol. 326, 1523 (2003) CrossRefGoogle Scholar
  3. 3.
    A. Damjanovic et al., Phys. Rev. E 65, 031919 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    M.K. Sener, K. Schulten, Phys. Rev. E 65, 031916 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhao, M.F. Ng, Phys. Rev. E 69, 032902 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    J. Ye et al., J. Chem. Phys. 136, 245104 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    R. Kumble, R. Hochstrasser, J. Chem. Phys. 109, 855 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    V. Nagarajan et al., Proc. Natl. Acad. Sci. USA 93, 13774 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    V. Nagarajan et al., J. Phys. Chem. B 103, 2297 (1999) CrossRefGoogle Scholar
  10. 10.
    V. Nagarajan, W.W. Parson, J. Phys. Chem. B 104, 4010 (2000) CrossRefGoogle Scholar
  11. 11.
    V. Čápek, I. Barvík, P. Heřman, Chem. Phys. 270, 141 (2001) CrossRefGoogle Scholar
  12. 12.
    P. Heřman, I. Barvík, Chem. Phys. 274, 199 (2001) CrossRefGoogle Scholar
  13. 13.
    P. Heřman, I. Barvík, M. Urbanec, J. Lumin. 108, 85 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Heřman et al., J. Lumin. 94-95, 447 (2001) CrossRefGoogle Scholar
  15. 15.
    P. Heřman, I. Barvík, Czech. J. Phys. 53, 579 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    P. Heřman, I. Barvík, Phys. Stat. Sol. C 3, 3408 (2006)CrossRefGoogle Scholar
  17. 17.
    P. Heřman et al., Chem. Phys. 275, 1 (2002)CrossRefGoogle Scholar
  18. 18.
    P. Heřman, I. Barvík, J. Lumin. 122–123, 558 (2007) Google Scholar
  19. 19.
    P. Heřman, D. Zapletal, I. Barvík, J. Lumin. 128, 768 (2008) CrossRefGoogle Scholar
  20. 20.
    P. Heřman, I. Barvík, D. Zapletal, Lect. Notes Comput. Sci. 5101, 661 (2008) CrossRefGoogle Scholar
  21. 21.
    P. Heřman, D. Zapletal, J. Šlégr, Physics Procedia 13, 14 (2011)CrossRefGoogle Scholar
  22. 22.
    P. Heřman, D. Zapletal, M. Horák, in Proceedings of the 5th International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP2011) Lisbon, 2011, pp. 1–6 Google Scholar
  23. 23.
    D. Zapletal, P. Heřman, in Proceedings of the 13th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering (MACMESE ’11) Athens, 2011 (WSEAS Press), pp. 182−187 Google Scholar
  24. 24.
    D. Zapletal, P. Heřman, Int. J. Math. Comp. Sim. 6, 144 (2012)Google Scholar
  25. 25.
    M. Horák, P. Heřman, D. Zapletal, Advances in Mathematical and Computational Methods, in Proceedings of the 14th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering (MACMESE ’12) Athens, 2012 (WSEAS Press), pp. 97–102 Google Scholar
  26. 26.
    M. Horák, P. Heřman, D. Zapletal, Int. J. Math. Comp. Sim. 7, 85 (2013)Google Scholar
  27. 27.
    P. Heřman, D. Zapletal, Recent Advances in Information Science, Proceedings of the 3rd European Conference of Computer Science (ECCS ’12) Athens, 2012 (WSEAS Press), pp. 79−84Google Scholar
  28. 28.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)Google Scholar
  29. 29.
    W.M. Zhang et al., J. Chem. Phys. 108, 7763 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    V.I. Novoderezhkin, D. Rutkauskas, R. van Grondelle, Biophys. J. 90, 2890 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    A.G. Redfield, Adv. Magn. Reson. 1, 1 (1965)Google Scholar
  32. 32.
    D. Rutkauskas et al., Biophys. J. 88, 422 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    D. Rutkauskas et al., Biochemistry 43, 4431 (2004) CrossRefGoogle Scholar
  34. 34.
    V. May, O. Kühn, Charge and Energy Transfer in Molecular Systems (Wiley-WCH, Berlin, 2000)Google Scholar
  35. 35.
    O. Zerlauskiene et al., J. Phys. Chem. B 112, 15883 (2008) CrossRefGoogle Scholar
  36. 36.
    P. Heřman, D. Zapletal, I. Barvík, in Proceedings of the IEEE 12th International Conference on Computational Science and Engineering (CSE ’09) Vancouver, 2009, pp. 437−442Google Scholar
  37. 37.
    P. Heřman, I. Barvík, D. Zapletal, J. Lumin. 119-120, 496 (2006) CrossRefGoogle Scholar
  38. 38.
    C. Hofmann, T.J. Aartsma, J. Köhler, Chem. Phys. Lett. 395, 373 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    S. Wolfram, The Mathematica Book, 5th edn. (Wolfram Media, 2003)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Hradec KrálovéHradec KrálovéCzech Republic
  2. 2.Institute of Mathematics and Quantitative Methods, Faculty of Economics and AdministrationUniversity of PardubicePardubiceCzech Republic
  3. 3.Faculty of EducationUniversity of Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations