Skip to main content
Log in

Rectification due to harmonic mixing of two coherent electromagnetic waves with commensurate frequencies in carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on a theoretical investigation of carbon nanotubes subjected to a pure alternating electric field consisting of two phase-shifted harmonic fields of frequencies ω 1 = Ω and ω 2 = 2Ω (harmonic mixing) without any direct current bias. We employed a tight-binding approximation for the description of the energy bands of the carbon nanotubes and the Boltzmann transport equation with constant relaxation time approximation. The results are compared to that of a superlattice under similar conditions. The results indicate a direct current generation by the carbon nanotubes due to the harmonic mixing. The described effect is in essence, due to the nonlinearity associated with the non-parabolicity of the electron energy band, which is greater in the carbon nanotubes than the superlattices. The strong effect observed in the carbon nanotubes is attributed to the stark components and the specific dispersion law inherent in hexagonal crystalline structure of the carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.V. Kibis, D.G.W. Parfitt, M.E. Portnoi, Phys. Rev. B 71, 035411 (2005)

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. S.A. Maksimenko, G.Y. Slepyan, Phys. Rev. Lett. 84, 362 (2000)

    Article  ADS  Google Scholar 

  4. G. Pennington, N. Goldsman, Phys. Rev. B 68, 045426 (2003)

    Article  ADS  Google Scholar 

  5. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  6. H. Khosravi, A. Bahari, N. Daneshfari, Phys. Scr. 77, 5 (2008)

    Article  Google Scholar 

  7. V.I.A. Margulis, T.A. Sizikova, Physica B 245, 173 (1998)

    Article  ADS  Google Scholar 

  8. C. Stanciu et al., Appl. Phys. Lett. 81, 4064 (2002)

    Article  ADS  Google Scholar 

  9. G.Y. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Hermann, E.E.B. Campbell, I.V. Hertel, Phys. Rev. A 60, R777 (1999)

    Article  ADS  Google Scholar 

  10. G.Y. Slepyan, S.A. Maksimenko, V.P. Kalosha, A.V. Gusakov, J. Hermann, Phys. Rev. A 63, 053808 (2001)

    Article  ADS  Google Scholar 

  11. C.K.N. Patel, R.E. Slusher, P.A. Fleury, Phys. Rev. Lett. 17, 1011 (1966)

    Article  ADS  Google Scholar 

  12. P.A. Wolf, G.A. Pearson, Phys. Rev. Lett. 17, 1015 (1966)

    Article  ADS  Google Scholar 

  13. A.M. Belyantsev, V.A. Kozlov, B.A. Trifonov, Phys. Stat. Sol. B 48, 581 (1971)

    Article  ADS  Google Scholar 

  14. K. Seeger, Appl. Phys. Lett. 76, 82 (2000)

    Article  ADS  Google Scholar 

  15. V.M. Fomin, E.P. Pokatilov, Phys. Stat. Sol. B 97, 161 (1980)

    Article  ADS  Google Scholar 

  16. G.M. Shmelev, Nguen Khong Shon, G.I. Tsurkan, Izvestiya Vysshikh Uchebnykh Zavedenii Fizika 28, 84 (1985) [Sov. Phys. J. 28, 161 (1985)]

    Google Scholar 

  17. V.N. Genkin, V.A. Kozlov, V.I. Piskaryev, Fizika i Tekhnika Poluprovodnikov 8, 2013 (1974) [Sov. Phys. Semicond. 8, 1307 (1975)]

    Google Scholar 

  18. I. Goychuk, P. Hänggi, Europhys. Lett. 43, 503 (1998)

    Article  ADS  Google Scholar 

  19. Yu.A. Romanov, V.P. Bovin, L.K. Orlov, Fizika i Tekhnika Poluprovodnikov 12, 1665 (1978) [Sov. Phys. Semicond. 12, 987 (1978)]

    Google Scholar 

  20. L.K. Orlov, Yu.A. Romanov, Fiz. Tverd. Tela 19, 726 (1977)

    Google Scholar 

  21. L.K. Orlov, Yu.A. Romanov, Sov. Phys. Solid State 19, 421 (1977)

    Google Scholar 

  22. K.N. Alekseev, F.V. Kusmartsev, arXiv:cond-mat/ 0012348v1 (2000)

  23. K.N. Alekssev, M.V. Erementchouk, F.V. Kusmarttsev, Europhys. Lett. 47, 595 (1999)

    Article  ADS  Google Scholar 

  24. V.V. Pavlovich, Fiz. Tverd. Tela 19, 97 (1977)

    Google Scholar 

  25. S.Y. Mensah, G.M. Shmelev, E.M. Epshtein, Izv. Vyzov, Fizika 6, 112 (1988)

    Google Scholar 

  26. S.Y. Mensah, S.S. Abukari, N.G. Mensah, K.A. Dompreh, A. Twum, F.K.A. Allotey, arXiv:1002.3233 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kofi W. Adu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abukari, S., Adu, K., Mensah, S. et al. Rectification due to harmonic mixing of two coherent electromagnetic waves with commensurate frequencies in carbon nanotubes. Eur. Phys. J. B 86, 106 (2013). https://doi.org/10.1140/epjb/e2013-30011-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30011-3

Keywords

Navigation