Skip to main content
Log in

Quantum quenches in one-dimensional gapless systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a comparison between the bosonization results for quantum quenches and exact diagonalizations in microscopic models of interacting spinless fermions in a one-dimensional lattice. The numerical analysis of the long-time averages shows that density-density correlations at small momenta tend to a non-zero limit, mimicking a thermal behavior. These results are at variance with the bosonization approach, which predicts the presence of long-wavelength critical properties in the long-time evolution. By contrast, the numerical results for finite momenta suggest that the singularities at 2k F in the density-density correlations and at k F in the momentum distribution are preserved during the time evolution. The presence of an interaction term that breaks integrability flattens out all singularities, suggesting that the time evolution of one-dimensional lattice models after a quantum quench may differ from that of the Luttinger model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Greiner, O. Mandel, T.W. Hansch, I. Bloch, Nature 419, 51 (2002)

    Article  ADS  Google Scholar 

  2. T. Kinoshita, T. Wenger, D.S. Weiss, Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  3. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Nature 449, 324 (2007)

    Article  ADS  Google Scholar 

  4. S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwock, J. Eisert, I. Bloch, Nat. Phys. 8, 325 (2012)

    Article  Google Scholar 

  5. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)

    Article  ADS  Google Scholar 

  6. P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, Phys. Rev. Lett. 102, 130603 (2009)

    Article  ADS  Google Scholar 

  7. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  8. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011) and reference therein

    Article  ADS  Google Scholar 

  9. M.A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006)

    Article  ADS  Google Scholar 

  10. C. Kollath, A.M. Lauchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007)

    Article  ADS  Google Scholar 

  11. S.R. Manmana, S. Wessel, R.M. Noack, A. Muramatsu, Phys. Rev. Lett. 98, 210405 (2007)

    Article  ADS  Google Scholar 

  12. P. Calabrese, F.H.L. Essler, M. Fagotti, Phys. Rev. Lett. 106, 227203 (2011)

    Article  ADS  Google Scholar 

  13. B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004)

  14. E.A. Yuzbashyan, B.S. Shastry, arXiv:1111.3375v1 [cond-mat.str-el] (2011) and references therein

  15. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  16. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  17. E.H. Lieb, D.C. Mattis, J. Math. Phys. 6, 304 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Luther, I. Peschel, Phys. Rev. B 9, 2911 (1974)

    Article  ADS  Google Scholar 

  19. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  20. F.D.M. Haldane, J. Phys. C 14, 2585 (1981)

    Article  ADS  Google Scholar 

  21. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004)

  22. C. Karrasch, J. Rentrop, D. Schuricht, V. Meden, Phys. Rev. Lett. 109, 126406 (2012)

    Article  ADS  Google Scholar 

  23. A. Mitra, T. Giamarchi, Phys. Rev. Lett. 107, 150602 (2011)

    Article  ADS  Google Scholar 

  24. R. Jastrow, Phys. Rev. 98, 1479 (1955)

    Article  ADS  MATH  Google Scholar 

  25. M. Capello, F. Becca, M. Fabrizio, S. Sorella, E. Tosatti, Phys. Rev. Lett. 94, 026406 (2005)

    Article  ADS  Google Scholar 

  26. M. Capello, F. Becca, M. Fabrizio, S. Sorella, Phys. Rev. Lett. 99, 056402 (2007)

    Article  ADS  Google Scholar 

  27. G. Carleo, F. Becca, M. Schiró, M. Fabrizio, Sci. Rep. 2, 243 (2012)

    Article  Google Scholar 

  28. I. Affleck, D. Gepner, H.J. Schulz, T. Ziman, J. Phys. A 22, 511 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Sorella, A. Parola, M. Parrinello, E. Tosatti, Europhys. Lett. 12, 721 (1990)

    Article  ADS  Google Scholar 

  30. D. Poilblanc, Phys. Rev. B 84, 045120 (2011)

    Article  ADS  Google Scholar 

  31. B. Tayo, S. Sorella, Phys. Rev. B 78, 115117 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Becca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coira, E., Becca, F. & Parola, A. Quantum quenches in one-dimensional gapless systems. Eur. Phys. J. B 86, 55 (2013). https://doi.org/10.1140/epjb/e2012-30978-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30978-y

Keywords

Navigation