Skip to main content
Log in

Antiferromagnetic half-metallicity of transition metal nitrides under volume expansion

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transition metal pnictides ABX2 have been recently proposed as half-metallic fully compensated ferrimagnets, also briefly referred to as half-metallic “antiferromagnets” [N. Long, M.Ogura, H. Akai, J. Phys.: Condens. Matter 21, 064241 (2009)]. In this work we carry out a systematic study of the more promising cases of the transition metal nitrides MnCoN2 and NiCrN2 on the basis of density functional theory in the framework of full-potential linearized augmented plane wave method. The electronic structures and the magnetic properties of the above hypothetical compounds in Zinc-blende-type, NaCl-type, and Wurtzite-type structure are calculated within generalized gradient approximation. The results reveal that, although these compounds are metallic in their bulk equilibrium in all three structures, they exhibit antiferromagnetic half-metallicity under negative stress or volume expansion in a limited range of lattice parameters, which is significantly larger than the equilibrium values. This suggests that a situation in which half-metallicity may arise, is when these compounds are coated on semiconducting layers of larger lattice constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. S.A. Wolf, D.D. Awshalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  3. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4824 (1989)

    Article  ADS  Google Scholar 

  4. Half-metallic alloys: fundamentals and applications, edited by I. Galanakis, P.H. Dederichs (Springer, Berlin, 2005)

  5. I. Galanakis, Ph. Mavropoulos, J. Phys.: Condens. Matter 19, 315213 (2007)

    Article  ADS  Google Scholar 

  6. W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001)

    Article  ADS  Google Scholar 

  7. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  8. H. van Leuken, R.A. de Groot, Phys. Rev. Lett. 74, 1171 (1995)

    Article  ADS  Google Scholar 

  9. W.E. Pickett, Phys. Rev. Lett. 77, 3185 (1996)

    Article  ADS  Google Scholar 

  10. S. Wurmhel, H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys.: Condens. Matter 18, 6171 (2006)

    Article  ADS  Google Scholar 

  11. I. Galanakis, K. Özdogan, E. Sasioglu, B. Aktas, Phys. Rev. B 75, 172405 (2007)

    Article  ADS  Google Scholar 

  12. H. Akinaga, T. Manago, M. Shirai, Jpn J. Appl. Phys. 39, L1118 (2000)

    Article  ADS  Google Scholar 

  13. H. Akai, M. Ogura, Phys. Rev. Lett. 97, 026401 (2006)

    Article  ADS  Google Scholar 

  14. N. Long, M. Ogura, H. Akai, J. Phys.: Condens. Matter 21, 064241 (2009)

    Article  ADS  Google Scholar 

  15. H. Akai, http://sham.phys.sci.osaka-u.ac.jp/kkr/

  16. L. Bergqvist, P.H. Dederichs, J. Phys.: Condens. Matter 19, 216220 (2007)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  19. http://www.WIEN2k.at

  20. V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    Article  ADS  Google Scholar 

  21. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259 (2003)

    Article  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. N. Long, private communication

  25. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  26. H. Akai, Phys. Rev. Lett. 81, 3002 (1998)

    Article  ADS  Google Scholar 

  27. G.K. Madsen, P. Novák, Calculating the effective U in APW methods. NiO WIEN2k-Textbooks, http://www.WIEN2k.at/reg_user/textbooks

  28. F. Duan, J. Guojun, Introduction to Condensed Matter Physics (World Scientific, Singapore, 2005)

  29. M. Nakao, Phys. Rev. B 77, 134414 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  30. M.S. Miao, W.R.L. Lambrecht, Phys. Rev. B 71, 064407 (2005)

    Article  ADS  Google Scholar 

  31. M.S. Miao, W.R.L. Lambrecht, Phys. Rev. B 71, 214405 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Davatolhagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foroughpour, M., Davatolhagh, S. & Tabatabaeifar, AH. Antiferromagnetic half-metallicity of transition metal nitrides under volume expansion. Eur. Phys. J. B 86, 78 (2013). https://doi.org/10.1140/epjb/e2012-30929-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30929-8

Keywords

Navigation