Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multi-band tight-binding models

Regular Article

Abstract

Diluted magnetic semiconductors (DMS) like Ga1−xMnxAs are described by a realistic tight-binding model (TBM) for the (valence) bands of GaAs, by a Zener (J-)term modeling the coupling of the localized Mn-spins to the spins of the valence band electrons, and by an additional potential scattering (V-) term due to the Mn-impurities. We calculate the effective (Heisenberg) exchange interaction between two Mn-moments mediated by the valence electrons. The influence of the number of bands taken into account (6-band or 8-band TBM) and of the potential (impurity) scattering V-term is investigated. We find that for realistic values of the parameters the indirect exchange integrals show a long-range, oscillating (RKKY-like) behavior, if the V-term is neglected, probably leading to spin-glass behavior rather than magnetic order. But by including a V-term of a realistic magnitude the exchange couplings become short ranged and mainly positive allowing for the possibility of ferromagnetic order. Our results are in good agreement with available results of ab initio treatments.

Keywords

Solid State and Materials 

References

  1. 1.
    I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    T. Jungwirth et al., Phys. Rev. B 72, 165204 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Korzhavyi, I. Turek, Phys. Rev. Lett. 93, 137202 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    G. Bouzerar, T. Ziman, J. Kudrnovský, Europhys. Lett. 69, 812 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Rev. Mod. Phys. 78, 809 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Sato et al., Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    R. Bouzerar, G. Bouzerar, Europhys. Lett. 92, 47006 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    G. Bouzerar, R. Bouzerar, New J. Phys. 13, 023002 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yildirim, G. Alvarez, A. Moreo, E. Dagotto, Phys. Rev. Lett. 99, 057207 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)ADSMATHCrossRefGoogle Scholar
  12. 12.
    A. Liechtenstein, M. Katsnelson, V. Antropov, V. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    R. Bouzerar, G. Bouzerar, T. Ziman, Europhys. Lett. 78, 67003 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Chakraborty, R. Bouzerar, G. Bouzerar, Eur. Phys. J. B 81, 405 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Tang, M.E. Flatté, Phys. Rev. Lett. 92, 047201 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. Mašek, J. Kudrnovský, F. Máca, J. Sinova, A.H. MacDonald, R.P. Campion, B.L. Gallagher, T. Jungwirth, Phys. Rev. B 75, 045202 (2007)ADSGoogle Scholar
  17. 17.
    M. Turek, J. Siewert, J. Fabian, Phys. Rev. B 78, 085211 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Loehr, Phys. Rev. B 50, 5429 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    I. Vurgaftman, J.R. Meyer, Phys. Rev. B 64, 245207 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J. Kudrnovský, I. Turek, V. Drchal, F. Máca, P. Weinberger, P. Bruno, Phys. Rev. B 69, 115208 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Anderson, Phys. Rev. 124, 41 (1961)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J. Mašek et al., Phys. Rev. Lett. 105, 227202 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    R.C. Myers, M. Poggio, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 95, 017204 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Poggio, R.C. Myers, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. B 72, 235313 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    B.K. Agrawal, P.S. Yadav, S. Kumar, S. Agrawal, Phys. Rev. B 52, 4896 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    T. Shimazaki, Y. Asai, J. Chem. Phys. 132, 224105 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S. Sanvito, N.A. Hill, Phys. Rev. B 62, 15553 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    P. Bruno, J. Kudrnovský, V. Drchal, I. Turek, Phys. Rev. Lett. 76, 4254 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    M. Linnarsson, E. Janzén, B. Monemar, M. Kleverman, A. Thilderkvist, Phys. Rev. B 55, 6938 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    G. Bouzerar, Europhys. Lett. 79, 57007 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    S. Hilbert, W. Nolting, Phys. Rev. B 71, 113204 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    S. Barthel, G. Czycholl, G. Bouzerar, (2011), arXiv:1107.4694[cond-mat.str-el]Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Barthel
    • 1
  • Gerd Czycholl
    • 1
  • Georges Bouzerar
    • 2
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of BremenBremenGermany
  2. 2.Institut NéelGrenoble Cedex 09France
  3. 3.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations